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HIGHLIGHTS

® A new framework with multi-learning processes and specified rules is introduced for demand-driven cooling controls.
® The proposed control can automatically adapt to occupancy scenarios without prior calibration and knowledge.
® 7-52% energy savings were achieved in case study offices as compared to scheduled cooling operations.

ARTICLE INFO ABSTRACT

Heating, ventilation, and air-conditioning (HVAC) are among the major energy demand in the buildings sector
globally. Improving the energy efficiency of such systems is a critical objective for mitigating greenhouse gas
emissions and transitioning towards renewable sources of energy supply. The interest of this paper is to explore
means to increase the efficiency of HVAC systems in accommodating occupants’ behavior in real time. For
instance, rooms in office buildings are not always occupied by occupants during scheduled HVAC service per-
iods. This offers an opportunity to reduce unnecessary energy demands of HVAC systems associated with oc-
cupants’ behavior. An in-depth analysis of occupants’ stochastic behavior within an office building is conducted
in this paper. A demand-driven control strategy is proposed that automatically responds to occupants’ energy-
related behavior for reducing energy consumption and maintains room temperature for occupants with similar
performances as a static cooling. In this control strategy, two types of machine learning methods — unsupervised
and supervised learning - are applied to learn occupants’ behavior in two learning processes. The occupancy-
related information learned by the algorithms is used by a set of specified rules to infer real-time room setpoints
for controlling the office's space cooling system. This learning-based approach intends to reduce the need for
human intervention in the cooling system’s control. The proposed strategy was applied to control the cooling
system of the office building under real-world conditions. Eleven case study office spaces were selected, re-
presenting three typical office uses: single person offices, multi-person offices, and meeting rooms. The ex-
perimental results report between 7% and 52% energy savings as compared to the conventionally-scheduled
cooling systems.
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1. Introduction

Globally, buildings account for approximately one-third of total
final energy consumption [1]. Certain uses — heating, ventilation, and
air-conditioning (HVAC) — are major consumers of energy and account
for about 40% of total energy consumption in buildings [2]. Especially
in extreme climates, such as the tropical weather of Singapore, air-
conditioning systems are operated throughout the year, accounted for
over 50% of the building stock’s electricity consumption in these re-
gions [3].
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Occupants’ behavior within buildings is a significant element af-
fecting energy consumption [4]. For office buildings, rooms are not
always fully occupied by occupants during daytimes, and some rooms
are routinely unoccupied. For example, Mahdavi et al. [5] collected
occupancy data from 48 offices of 3 university buildings in Austria,
consisting of 41 single person offices and 7 multi-person offices (i.e. 6
rooms with 2 occupants and 1 room with 3 occupants). Results in-
dicated that average occupancy rates of these offices were rarely over
60% according to calculated 24-h occupancy probability profiles. In
another office building located in Singapore, Peng et al. [6] used
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Nomenclature CM (occ, vgy;) control mode
Kpitrn the number of occupancy patterns
Abbreviations QAeyr a valid time of the first arrival
Vewrmax ~ Maximum vacancy duration of working hours in the cur-
HVAC  heating, ventilation, and air-conditioning rent day
ANN artificial neural network Ya final training dataset
SVM support vector machine tordetip  time of occupants’ next presence
CO, carbon dioxide tprder,drin total presence duration for the rest of the day
HMM  Hidden Markov Model NN(KknN, Vs Ya)  kgxnn mearest neighbors
KNN K-nearest neighbor Your current-day occupancy vector
PID proportional, integral, and derivative Yourn value in the n-th bit of y,,,
RBC rule-based control Mg size of the training dataset
BMS building management station Yidm a sample in the training dataset
HMI human-machine interface Yidmn value in the n-th bit of y,; ,
PCB passive chilled beam Pinra a threshold value
Tip,cms comfort temperature setpoint
Symbols (unit) Tipai idle temperature setpoint
Tip.ddi deep idle temperature setpoint
Yool global training dataset economy temperature setpoint
R size of the global training dataset Ldcesirt time at which the DCC starts to infer temperature setpoints
% the number of unoccupied days in the past x days tdee,sip time at which the facility department switches off cooling
Znyg the number of days that an office is vacant in the training services
dataset tarrsnra  threshold value of cumulative probability of daily first
Y a local training dataset arrivals ] . )
Qj min minimum value of daily first arrival in a local training tapririnra  threshold value of cumulative probability of daily last
dataset departures
@ max maximum value of daily first arrivals in a local training Larnnrdr @ Larnhraz - threshold value of presence durations
dataset Lsg time segment
dev,or  deviation of daily first arrival in a local training dataset Eengmddrin <3 OOling energy consumed by modifying temperature
n size of the evaluated training set setpoints from Ty, q and Ty, gq to the comfort mode for
Vi max value of daily maximum vacancy duration during working short stays
hours taprir daily last departure
Vj thrd a threshold value of maximum vacancy durations

motion sensors to detect occupants’ behavior in 6 offices over a seven-
month period. These offices included 4 single person offices and 2
multi-person offices (i.e. one room with 2 occupants and one room with
4 occupants). They found that the single person offices had low occu-
pancy rates — daily peak occupancy probability only touched about
60%, and the multi-person offices had higher occupancy likelihoods —
their peak occupancy rates were about 90%. However, equipment in
buildings normally keeps in operation without considering actual oc-
cupancy of offices. This causes unnecessary energy usage during non-
occupied periods. Masoso et al. [7] reported that energy consumed in
non-occupied hours is more than that used in occupied hours — 56% and
44%, respectively. They mentioned that this was primarily caused by
keeping office equipment in operation until the end of each day, irre-
spective of occupancy patterns. Nguyen et al. [8] also indicated occu-
pants’ energy-unconscious behavior resulted in about one-third more
energy consumption in buildings.

In the building sector, upgrading the energy efficiency of HVAC
systems is a critical objective for developing a low-carbon economy. An
approach to reduce energy-related carbon emission in principle is to
decrease energy demand [9,10]. From a control science point of view, a
better understanding of occupants’ behavior is a critical component to
achieve this goal. To reduce unnecessary energy requirements and
maintain comfortable indoor temperatures for occupants, one group of
control strategies make air-conditioning systems adapt to occupants’
actual energy-related behavior instead of static operation schedules
specified by the facility departments of the buildings. These demand-
driven control strategies switch HVAC systems to setback modes with
adjusting indoor climate setpoints (i.e. room temperature, humidity,
and carbon dioxide concentration) during unoccupied hours. When
office spaces they serve are being occupied again, the demand-driven

1344

controls switch the systems back to comfort modes.

Central to developing a demand-driven HVAC control strategy is
time-varying data on current and upcoming occupancy. Real-time oc-
cupancy can be measured or inferred from sensor networks installed in
perceived rooms. Prominent real-time occupancy detection in com-
mercial office buildings are reviewed by Labeodan et al. [11]. Never-
theless, predicting occupancy of individual rooms in coming hours is a
challenging task due to the fact that occupants’ behavior is highly
stochastic.

In prior HVAC control research, a group of machine learning tech-
niques were explored and embedded into systems to infer necessary
knowledge of outdoor and indoor climate, room occupancy, and oc-
cupants’ thermal preferences [12]. These yielded promising results in
improving energy savings and indoor thermal comfort. In this study, we
focus mainly on occupancy demand-driven control with machine
learning techniques.

Prior occupancy learning studies with machine learning techniques
have represented and predicted occupants’ behavior in different for-
mats, such as binary data (i.e. presence and absence) [13-18], discrete
values (i.e. the number of occupants) [19-28], or continuous data (i.e.
probability distributions of occupancy) [29-31]. Two groups of ma-
chine learning algorithms - that is, supervised and unsupervised
learning [32,33] — were exploited in this area. The former is utilized to
learn room occupancy based on occupancy datasets collected from
buildings. The latter is used to find occupancy patterns.

To predict occupants’ presence for a domestic heating control
system, the ACHE project [13] developed an occupancy predictor to
learn occupancy data transformed from motion signals. Researchers in
this project tested three different occupancy predictor approaches: a
lookup table, a backpropagation artificial neural network (ANN), and a
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backpropagation ANN with a look-up table, respectively. Test results
showed the ANN with look-up table generated the best prediction of the
three. Another residential heating application developed by Scott et al.
[14] used a k-nearest neighbor (KNN) algorithm to forecast occupants’
presence based on datasets collected from radio frequency identifica-
tion devices and motion sensors. Their test results showed that total gas
usage for heating reduced by 8% to 18% by using the forecasted pre-
sence information to preheat entire houses. Some studies focus on
modeling occupants’ presence and absence in monitored spaces with
machine learning algorithms. Kadouce et al. [15] used a support vector
machine (SVM) classifier to infer occupants’ presence and absence with
learning sensory datasets from motion sensors, pressure detectors,
lamps, door and switch contactors, and flow meters. Sangogboye et al.
[16] modeled occupants’ presence with machine learning techniques
based on motion data from two commercial buildings, and SVM in-
dicated robust performance according to their result. Ortega et al. [17]
used SVM to model occupants’ presence and activity patterns based on
data collected from motion, pressure and contact sensors in 3 houses.
ANN, KNN, and SVM were used as supervised learning in the above
studies. Chaney et al. [18] evaluated occupants’ presence and vacancy
status with Hidden Markov Model (HMM) based on data of electrical
power, carbon dioxide (CO,) levels, and room dew point.

For controlling a heating and cooling system in an academic house,
Dong’s HVAC control testbed [19,20] embedded a function to predict
the number of occupants. It used a Gaussian Mixture Model to classify
changes of selected features derived from data on sound, light, motion,
CO2 concentration, temperature, and relative humidity. It then em-
ployed a supervised learning algorithm (i.e. HMM) to estimate the
number of occupants. The experimental result showed 26% and 17.8%
heating and cooling energy saved, respectively, when compared to a
scheduled control operation. In another study, Wang et al. [21] also
integrated profiles of the number of occupants to effectively control an
HVAC system. They used a feature-scaled ANN to generate profiles of
the number of occupants in an office of City University of Hong Kong
based on image datasets collected from cameras. Their simulation result
indicated 20% energy saved. Some studies modeled the number of oc-
cupants in buildings with machine learning algorithms. Ryu et al. [22]
proposed a predictor of the number of occupants with HMM, using data
of CO, concentration, energy use of lighting systems and appliances
collected from a test-bed. Yang et al. [23] utilized an ANN with a radial
basis function as the supervised learning to estimate the number of
occupants in an educational building from mining data of indoor tem-
perature, humidity, CO, level, illumination, acoustics, and occupants’
movements. Mamidi et al. [24] exploited machine learning techniques
to predict the number of occupants for an open office. Their results
indicated that ANN achieved better performance based on learning data
of motion, CO, concentration, sound level, light, and door state. For
another open space, Ekwevugbe et al. [25] also used ANN to infer the
number of occupants based on sound data, indoor temperature, and
motion detection. Chen et al. [26] modeled occupancy level based on
data collected from a building in the University of Florida campus, ANN
and SVM showed superior performance for predicting the number of
occupants during the forecast time frame of 2 h. Liang et al. [27] pro-
posed an approach that firstly clustered occupancy patterns with an
unsupervised learning algorithm (i.e. k-means), and then it learned
rules with a supervised learning algorithm (i.e. decision tree) to infer
daily profiles of the number of occupants in a building. Recently, Ca-
pozzoli et al. [28] employed the similar process with k-means and de-
cision tree to mode occupancy profile (i.e. the number of occupants) for
reducing energy consumption of HVAC systems. Their simulation result
suggested a 14% energy saving potential in comparison to a static op-
eration schedule.

To control indoor household temperatures in a simulation-based
platform, Lu et al. [29] utilized an HMM to predict probabilities of
occupant departures, arrivals, and sleeping by learning from datasets
collected from motion and door sensors. Their results showed average

1345

Applied Energy 211 (2018) 1343-1358

cooling and heating energy savings of 28%. For another household
heating control study based on a simulated platform, Kleiminger et al.
[30] employed machine-learning-based approaches proposed in
[14,29] (i.e. KNN and HMM) and a presence-probabilities-based
strategy presented in [34] to predict occupants’ arrivals. Their occu-
pancy data was derived from 45 individuals’ mobile phone records, and
simulated results indicated annual energy savings of 6% to 17%. To
model occupancy schedules of an academic building based on the
format of daily probability distributions, D’Oca et al. [31] proposed a
three-step framework using both supervised learning and unsupervised
learning. In the first step, a supervised learning algorithm, decision tree,
was employed to predict presence by learning occupancy datasets of a
building. In the second step, a range of rules was generated by a rule
induction algorithm according to the information from the previous
step. Lastly, an unsupervised learning algorithm, k-means, was applied
to cluster the similar patterns of occupancy schedules for that building.

The above studies, and their related works, provide valuable in-
sights on exploring occupants’ behavior in buildings using machine
learning techniques. This study further explores occupancy demand-
driven cooling controls using machine learning techniques, and exploits
energy saving potentials in typical office scenarios. Scientific con-
tributions of this study contain:

® A new framework with multi-learning processes and rule-based
control is introduced for demand-driven cooling controls.

The proposed methodology can make cooling systems automatically
adapt to occupants’ actual energy demand in different office con-
texts for saving energy without compromising room temperatures
during occupied periods.

To obtain realistic results and to validate the effectiveness of the
control strategy in real-world applications, the proposed metho-
dology is conducted in 11 existing office settings. These comprise
three different and typical office types: single person offices, multi-
person offices, and meeting rooms. The results are presented and
discussed for each office type from five aspects.

The proposed methodology and the experimental results provide
view and information on energy conservation of building systems. In
the meantime, this study also demonstrates and discusses how this
control strategy is deployed with a building management station (BMS)
for real applications.

The subsequent sections of this paper are organized as follows.
Section 2 presents the proposed methodology of demand-driven control
in detail. Section 3 gives an introduction to the case study, including the
case study space and experimental setup, analysis of occupancy-related
data, and examples of control operation. Test results are illustrated
upon implementing the proposed control strategy in Section 4. Lastly,
Section 5 discusses and concludes the paper’ findings.

2. Methodology

This study focuses on the demand-driven cooling control (DCC) with
learning capabilities, following up our prior study [6]. For the approach
introduced in this paper, more occupancy-related features are analyzed
and integrated into the DCC. Furthermore, two algorithms are used to
learn occupancy patterns and predict occupants’ presence and presence
duration for the remainder of a day based on room motion signals. The
above strategies are integrated into this framework to enhance the
control reliability against the occupants’ stochastic behavior. Then the
forecasted occupancy information is indirectly deployed to infer set-
back setpoint temperatures according to a set of rules specified from our
study. The holistic control strategy is illustrated in this section.

2.1. The block diagram of the whole control strategy

An overview of the proposed control strategy is given in Fig. 1. This
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Fig. 1. Block diagram of the proposed control strategy.

consists of two layers. Local controllers with proportional, integral, and
derivative (PID) algorithm in the first layer are mainly in charge of
controlling cooling systems to ensure indoor temperatures at setpoint
levels. The DCC is embedded in the second layer to specify temperature
setpoints for the local controllers dynamically. The second layer makes
the entire cooling system capable of adapting to actual energy demands
relevant to occupants’ behavior.

The remainder of this section mainly introduces the second layer in
detail. It consists of four modules, including two learning processes
with machine learning techniques:

e Module 2.1: Dataset preparation.

e Module 2.2: Occupancy pattern learning (first learning process).

e Module 2.3: Occupants’ next presence and duration learning (second
learning process).

e Module 2.4: Rule-based control (RBC).

2.2. Module 2.1: dataset preparation

The goal of this module is to create and clean occupancy datasets for
two learning processes in the second layer.

In this study, we use motion sensors as devices to detect occupants’
movements. Such sensors are normally provided in buildings featuring
motion-controlling lighting systems, though the data from these sensors
could be used for other building automation purposes. The data pre-
paration module collects historical motion signals from motion sensors
equipped in each target office before conducting the DCC into air-
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conditioning systems, and closely monitors real-time occupants’ mo-
tions during the current day.

A time delay (TD) is required to interpret the motion data in terms
of occupancy. The TD is a minimum time needed between two con-
secutive movements (i.e. inactive time slices) to assume that there are
no occupants in the monitored spaces [35]. That is, if there is no
movement within time-frames that are greater than or equal to TD, the
space is assumed to be unoccupied. In this study, inactive time slices are
extracted from 7.5-month motion datasets of case study rooms to spe-
cify the TD. Inactive durations of less than 100 ss and 10 mins account
for over 97% and 98% of total inactive slices, respectively. In order to
get a high confidence level of confirming occupants’ vacancy, 10 mins is
assigned to TD, which is consistent with prior studies [36,37]. In other
words, the probability of vacancy is 2% of the total inactive slices. After
converting motion singles to occupancy information, each occupancy
vector contains a set of Boolean attribute data to represent occupancy
status per minute: 1 means that a monitored room is occupied and 0
means that the room is not occupied. The formatted occupancy data is
stored in two databases: a historical weekday dataset and a current-day
dataset. At the end time of a weekday, the current-day occupancy
vector is updated automatically to the historical dataset for the control
on the next day.

In the meantime, invalid occupancy data in occupancy vectors is
cleaned before saving the occupancy vector into the historical dataset.
The invalid occupancy data includes short stays (i.e. presence duration
is less than 3 mins) and a short daily first arrival (i.e. the first arrival
shows up before ay,y time point with less than dy,,y duration). a4 and
dirq are assigned by analyzing distributions of historical first arrivals
and durations of them. A data clean function is coded to compute all
presence durations, and then filter time slices of short stays (i.e. set
corresponding binary bits to 0). After cleaning short stays, the clean
function calculates the time and duration of the first arrival in the oc-
cupancy vector, and sets corresponding bits to 0 when the daily first
arrival meets the above criteria of the daily short first arrival.

Among them, a daily invalid first arrival with a short duration (i.e.
dinrq) is not valid for the DCC. That is because according to our ob-
servation and data analysis, the first short arrival before ay,, in an of-
fice is normally triggered by staff who clean the space, or one occupant
staying in the room briefly and then going to the pantry before re-
turning to the space or going somewhere else for a meeting.

2.3. Module 2.2: occupancy pattern learning

In this module, we define two types of training datasets: a global
training dataset and several local training datasets. The global training
dataset is selected from the historical weekday dataset. The local
training datasets are clustered from the global training set according to
the specified number of occupancy patterns in individual rooms, and
each training dataset represents a type of occupancy patterns in the
global dataset.

The aim of this module is not only to prepare global and local
training datasets, but also extract occupancy-related features from the
local training datasets and an occupancy vector of the current day.
Importantly, the datasets and parameters specified in this module are
automatically updated once a day or every several minutes, mainly to
make the DCC response to changes of occupants’ stochastic behavior.

2.3.1. Global training dataset

The global training data (Yy) is a set of daily occupancy vectors for
previous weekdays. A major parameter of it is the size of the global
training dataset (ng). In order to make the DCC operation quickly
respond to occupants’ behavior changes as circumstances vary (e.g. full-
load office work, business trips, holiday seasons, and new staff) as well
as ensuring ngy is not small, we specify its value according to rules
summarized in Table 1. The basic idea of this is to limit the number of
valid days (i.e. a room is occupied in a day) in the global training data
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Table 1
The mechanism for selecting the size of the global training dataset.

The number of days that an individual room is not The size of the global

occupied training dataset ngi;
220 230 240

20 <4 20

5<20<10 230 < 15 30

5< 220 <10 Z30 > 15 40

Z20 > 10 Z40 < 20 40

220 > 10 Z40 > 20 45

between 15 and 29. As shown in Table 1, the value of ng, is driven by
the number of unoccupied days in the past 20, 30, and 40 weekdays
(i.e. 220, 230, and z49). However, in case a particular room is not occu-
pied frequently, i.e., the number of unoccupied days is over 20 in the
past 40 weekdays, the value of ngy, is fixed to 45.

During the DCC operation, this vacancy-driven global training da-
taset is updated autonomously once a day in the early stage of the DCC
operation.

2.3.2. Local training datasets

The first learning process in this study is embedded in this sub-
module, mainly to learning occupancy patterns from the global training
data for clustering local training datasets.

In this study, we define four major categories of occupancy patterns,
as shown in Fig. 2. The gray blocks in Fig. 2(a) indicate that occupants
are present in rooms during those periods. Start and end times of the
gray blocks in the timeline only indicate differences of the four occu-
pancy patterns. Positions of them are not absolute values, differing in
rooms as circumstances change. For the first occupancy pattern (i.e.
pattern 1), rooms are occupied both in the morning and afternoon.
Pattern 2 shows that occupants leave their offices early. Conversely,
pattern 3 indicates that occupants tend to show up in their offices late.
‘Early’ and ‘late’ are relative to occupants’ normal behavior. Lastly, ‘no
presence’ in a day is defined as pattern 4. Four examples of the occu-
pancy patterns in an office are shown in Fig. 2(b). The above analysis
aims to limit the number of occupancy patterns (k) for clustering
local training datasets from the global dataset. In this study, kpm
therefore is limited to 4 when the global training dataset contains days
with no occupants present (i.e. pattern 4), otherwise k., is set to 3.

According to vector-based occupancy profiles, we extract seven
occupancy-related features as follows:

1. Day of the week.

2. Time of the daily first arrival.

3. Time of the daily last departure.
4. Daily total occupied duration.

a) 1| Patternl
0
1 | Pattern 2
0
1 | Pattern 3
0
1 | Pattern 4
0

Time of day
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5. The number of daily presence.
6. Daily maximum occupancy duration.
7. Daily maximum vacancy duration during working hours.

To reduce feature dimensionality for searching occupancy patterns,
we employed a sequential feature selection [38] to extract the three
most important occupancy-related features that shape daily occupancy
profiles. Among the above seven features, three features — time of the
daily first arrival, time of daily last departure, and daily maximum
vacancy duration during working hours - are chosen by the sequential
feature selection.

These three features are applied to two learning processes (i.e.
module 2.2 and module 2.3). In this module, the global training dataset
is divided into several training datasets according to clustered occu-
pancy patterns. The daily occupancy range is shaped by the two most
important features (i.e. the time of the daily first arrival and the time of
the daily last departure). Meanwhile, learning and control purposes
presented in Sections 2.4 and 2.5 are mainly related to occupants’ be-
havior within the daily first arrival and last departure. Thus, two-di-
mensional data (X) consisting of these two features are retrieved from
the global dataset for clustering the local training datasets. The time of
the daily first arrival and the maximum daily vacancy duration during
working hours are used in module 2.3 for selecting the final training
data from the global and local training datasets according to the oc-
cupancy pattern of the current day.

To recognize the local training datasets from the above two-di-
mensional occupancy-related dataset with less human intervention, we
employ an unsupervised learning algorithm that is k-means for clus-
tering, rather than a supervised learning algorithm used for classifica-
tion. The k-means clustering is a widely used unsupervised learning
approach, seeking k clusters from a given dataset [39-41]. To cluster
the local training datasets from the global training dataset, we deploy k-
means with an optimization criterion in this module, as shown in Eq.

D.
p; = argmin, [lxi—g |1 W

The two-dimensional dataset (X) is shown in Eq. (2), and means of
clusters (C) are presented in Eq. (3). x; and ¢; are samples of X and C,
respectively. Allocating x; to the closest cluster is computed by Eq. (1),
and ||-||* represents the Euclidean square norm.

X = {XpeXm), M = ngy &)

C= {C],...,Ck}, k= kpttrn 3)

The initial values of C are assigned randomly from the range of X.
They are updated according to Eq. (4) in each iteration of allocating X
to the closest clusters C, until the algorithm converges (i.e. assignments
of clusters do not change too much).

b) 1| Pattern1 IJ—I—l
0
1 | Pattern 2 —U-‘
0
1 | Pattern 3 I-I-M—UU—I—
0
1 | Pattern 4
0
0:00 6:00 12:00 18:00 0:00

Time of day (hour)

Fig. 2. Four types of occupancy patterns. (a) Formats of specified occupancy patterns, (b) examples of the occupancy patterns in an office.
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Table 2
The mechanisms for selecting training data from the global and local training datasets.

Two occupancy-related features in the current day The final
training data

The valid first arrival The maximum vacancy duration of (Yia)

Qeur past working hours veur,max

Aeyr =0 Yeibi

acur € [ajr1, ajr2] Yeivi

aaur € [gj 1, ajr2] Veur,max S Vjthrd Yietj

Aeur € [aj,rly aj,rz] Veur,max > maX(Vj,thrd) Yainl

_ XX

o r--—{L Pi=j}

DY I (R R 4
Occupancy clusters recognized from the above process portions the

global training dataset into k., sets of local training datasets (Y;), as

presented in Eq. (5):

Y= U™ %, p = j )

2.3.3. Feature extractor

The objectives of the proposed methodology not only make it is
possible for the DCC to learn from occupants’ original presence and
vacancy, but also incorporate deviations of occupancy-related features
to improve the reliability of control against occupants’ stochastic be-
havior. Therefore, the feature extraction in this submodule mainly fo-
cuses on retrieving occupancy-related features from each particular
local training dataset Y,;; and using them to get two parameters asso-
ciated with behavior deviations.

The first two features of a local training dataset are the minimum
and maximum values of daily first arrivals, represented by a;,, and
@jmax, respectively. The third feature is a deviation value of the daily
first arrivals (dev;q), as shown in Eq. (6). Where, n; is the size of the
evaluated local training dataset. The last feature is the value of daily
maximum vacancy durations during working hours (v} ).

9j,max — &,min
nj ’

max: 20}, ni >1
dev_)',arr = { J

0, n; = 1 6)

According to the above local-training-dataset-based features, two
key parameters are computed from them. The first one represents a time
range between a;,; and a;,-: [aj 1, @;,2]. aj 1 and a;,, are calculated ac-

cording to Egs. (7) and (8), respectively.

= aj,min_devj,arr (7)

ajr
aj,max + de“y,arr

(8

The second one is a threshold value of the maximum vacancy
durations (v ), defined in Eq. (9).

Qjr2 =

Vj,thrd = Vjmax + 20

9

2.3.4. Handling of the current-day occupancy information

This submodule mainly handles current-day occupancy data. If an
office is occupied (i.e. occ = 1) or the room is only unoccupied (occ = 0)
in a specified short period (i.e. vg,; = 1), the control jumps directly to
the RBC in the module 2.4 to call a comfort mode operation (CM = 1)
for maintaining room temperatures at assumed comfortable levels with
comfort setpoints. Otherwise, the DCC enters into a setback mode
(CM = 0) and the data clean function presented in Module 2.1 is exe-
cuted. The notation CM (occ,vg,¢) denotes the control modes (i.e. com-
fort and setback modes) during the control operation. As shown in Eq.
(10), it is determined by the current occupancy status and an indicator
of whether the current vacancy is short or not.
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1, occ =1
CM (occ,vgny) = 11, occ =0 and vy, = 1
0, otherwise (10)

For occupancy in the current day, a feature-detection function is
deployed to monitor and compute a valid time of the first arrival (a.,,)
and the maximum vacancy duration of past working hours (Ve max)-

In contrast to previous submodules in module 2.2 that are computed
spontaneously per day, the current-day occupancy data in this sub-
module runs in each control cycle.

2.4. Module 2.3: occupants’ next presence and duration learning

The module presented in this section chooses final training data
from the global and local datasets, and uses a supervised machine
learning algorithm to learn and predict occupants’ next presence and
presence duration for the remainder of a day based on the selected final
training data and the detected occupancy information in the current
day. This module is only executed by the DCC when zero is assigned to
CM (occ,Vspyy)-

2.4.1. Final training data selection

The global and local training datasets specified by Module 2.2 are
not assigned as training data for the occupancy learning process of
Module 2.3 directly. The final training data (Y4) is used as the training
data in this learning process, which is selected from the global or local
training datasets according to mechanisms presented in Table 2. The
time of the daily first arrival and the maximum daily vacancy duration
during working hours are employed by Table 2 to make decisions of
specifying the final training data, including a, and Ve me: of the cur-
rent day, [a; 1, aj,2] and vy, mex of the local datasets.

If a.,, keeps the initial state (i.e. zero) or does not falls into the range
of [ajn, a;,2], the global training dataset is assigned as final training
data. When a valid a,,, is perceived in the current day and falls into one
or more [aj 1, Gj,2], Veurmax is used to judge whether to choose local
training datasets or only to use the global training dataset as the final
training data. If vy mq. is larger than threshold values vj 44 of selected
local training datasets, we regard the current occupancy pattern as
deviating from patterns in these local training datasets, and the global
training dataset is restored as the final training data. Otherwise, one or
more local training datasets corresponding to matched [a;,, g;,,] are
employed as Y. As the values of a, and Ve mex Vary in line with oc-
cupants’ behavior in the current day, Y, is recalculated during the ex-
ecution of module 2.3.

2.4.2. Occupancy prediction

The second learning process based on the machine learning tech-
niques is embedded in this module. Inspired by [14] and further
exploited in our prior research [6], a supervised machine learning al-
gorithm — k-nearest neighbor (KNN) - is deployed in this study to
predict occupancy information.

For the DCC, whether occupants will be present in an office or not
indicates whether the cooling service is required or not. Meanwhile,
diminishing presence duration in the remaining day also implies that an
office tends to be unoccupied. The forecasted occupancy information,
therefore in this study, consists of time of the occupants’ next presence
(tprdci,np) and total presence duration in the remaining day (¢prger,armn)-

The KNN is usually used to seek k pieces of data from training da-
taset that are most similar to a piece of new information, with com-
puting distance between the new data and each sample in the training
dataset. Then the k-most-similar samples are assigned to the new data
for purposes of regression or classification [39,42].

In this study, the notation NN(k,),,.Y) represents a group of k
nearest neighbors that obtained from the final training data Y;; for the
current-day occupancy vector (3,,). For computing NN(k.),,,,Yq), the
value of k need to be assigned. Too large or too small value of k will
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make the algorithm overestimate or underestimate occupants’ next
presence and presence duration for the rest of the day. This value is
normally determined by fine tuning via trial-and-error or using cross-
validation [14,43]. According to the pre-study based on the simulation,
we summarize a set of rules together with two formulas to specify the
value of k in this work, as shown in Table 3. Z,, represents the number
of days that an office is vacant in the final training data.

The final training data and the current-day occupancy data for each
room are binary vectors. So the Hamming distance [44] that identifies
the number of bits on which the two binaries differ is employed to
determine the k-most-closest neighbors of the current-day occupancy
data. The Hamming distance of them is defined as in Eq. (11).

t
d(ycur’ ytd,m) = z {ycur,n # y[d,mn}

n=1

(€8]

where y,,. is a t-bit vector, carrying the occupancy status of the current
day from 00:00 to the sampling point (i.e. t in minute). y,,, , is the value
in the n-th bit of y,,. y,,, denotes a daily occupancy sample in the
training dataset (Y,4), and Yy, is the value in the n-th bit of y,, .

After getting NN(k, y,,,, Yiq) with the Hamming distance computa-
tion, fragments of the k-most-closest samples corresponding to re-
maining minutes in the current day are tailored to compute the occu-
pancy probability of each remaining bit. Then, a threshold value (p,,,)
is required to transform the occupancy-probability-based vector to a
binary-based occupancy vector. p,,, is a constant value that can be
defined between zero to one, and we set it to zero due to ensuring the
comfortable indoor temperature for occupants is the highest priority in
this study. This way, presence in a bit of the occupancy vector is stated
once the occupancy probability in that bit is greater than zero. p;,,; can
also be assigned to a larger value to achieve a more energy-conscious
purpose.

This partial occupancy vector is assigned to the rest of the current
day as the predicted occupancy vector. In the last step of this sub-
module, predicted occupancy information fgcny and tprgearn are
computed from it.

2.5. Module 2.4: Rule-Based Control (RBC)

Module 2.4 aims to infer time-dependent room temperature set-
points for local controllers. This section illustrates this module from two
aspects: (1) definition of the comfort and setback modes, (2) rules of
determining temperature setpoints of comfort and setback modes.

To start, two control modes with four temperature setpoints are
defined for the DCC. When a room is occupied or is only vacant in a
short period as explained in Section 2.3.4, the comfort temperature
setpoint (T, oms) is sent to the local controllers to have cooling systems
run at the comfort mode. Otherwise, the DCC process enters into the
setback mode. Three temperature setpoints are deployed in the setback
mode to achieve different levels of energy savings: idle temperature
(Tip,a1), deep idle temperature (T, qq), and economy temperature ().
They are defined in Egs. (12)-(14) as follows.

Tsp,dl = Rp,cmf + 1 [°C] 12)
Tipdat = Typat + 0.5 [°C] 13)
T;'p,ecn = 35 [°C] a4

The main objectives of applying the above setback temperature
setpoints are to reduce the cooling delivered to an office space step by
step as the probability of occupants being present in the room goes
down, and to maintain space temperature within the constraints until a
point in time at which the confidence level is high enough that the room
will not be occupied anymore on this day. We assume that an indoor
temperature of Ty, g, 1 °C higher than the Ty, .y, is within an acceptable
tolerance for occupants to represent the idle temperature. It is assigned
to save cooling energy when a room is not occupied, but there is a
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modest probability that it will be occupied with a certain duration in
the current day. is applied to shut down the cooling systems when
occupants will not return to their rooms in the current day. The value of
Tipqar is inserted between Ty, 4 and . This setpoint releases a room’s
temperature to a higher level than Ty, 4, as the likelihood of occupants
being present in the room goes down. The purpose of this is to reduce
cooling energy further compared to Ty, 4, and at the same time, it limits
room temperature not to rise too fast compared to .

To effectively use predicted tprye;,p and tprger,arn for the DCC opera-
tion, we also define another three sets of variables to formulate rules for
the changeover room temperature setpoints of the setback mode:

. Definitions of the DCC operation period
One parameter is the time at which the DCC starts to infer the
temperature setpoints (fge.qr), the other is the time at which the
facility department switches off the cooling systems (fgccsip)-

. Statistical analysis of historical occupancy data
Two threshold values are computed from cumulative probabilities of
historical daily first arrivals and last departures: o gra and tappr grds
respectively. In this study, fuma and tgprma are set to the time
points at which the cumulative probabilities of the first arrivals and
the last departures are 95%.
For a more energy-conscious perspective, these two values can be
set to smaller values such as 90% or less. However, a value higher
than 95% is not suggested since remaining 5% of first arrivals and
last departures are considered abnormal behavior for the DCC [6].

. Threshold values of presence durations: tg a1 and taym thrdz-

Four variables of the first two sets are time-based values in minutes,
and two variables of the third set are quantitative parameters. The four
time-based values divide a 24-h day into five ranges: fy; to fys, as
shown in Egs. (15)-(19). The daily first arrivals are mostly distributed
in ty 1 and g, and the daily last departures are mainly dispersed in £ 3
and fy 4.

tsg1 = (1, tacestr] (15)
g2 = (tdcc,sm’ [arr,lhrd) (16)
tsg3 = [Larrthrd> Ldcestp] 17)
tsga = (tdce,stps taprirthrdl (18)
tsgs = (Laprir hra» 1440] 19)

With the purpose of generalizing the DCC for requirements of di-
verse application scenarios, these three sets of variables are packaged
into an initialization function that can be configured by end-users. In
the last computation step of this module, the predicted tp4e,,p, and
tprder,drin are used indirectly to infer setback temperature setpoints based
on rules summarized in Table 4.

Table 3
The mechanism for calculating the value of k.

The final training data The size of the training The value of k

(Yea) dataset (n;q)

Yid = Yo g = 20 4

Ya =Y, Nig > 20

1d = Tglbt d max(zZo, —z:f xzo) +1
{f

Yid = Y ng =1 1

Yid = Yielj l1<ng<4 ng—1

Yid = Yiej ng > 4 4
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Table 4
The mechanism for determining time-dependent room temperature setpoints.

Control mode  Predicted occupancy information Temperature
CM (oce,Vgnrt) setpoint (Tgp)
Time of next Presence duration of the
presence remaining day (Uprdet,drm)
(prdet,np)
1 Tsp,cmf
0 prdet,np € lsg2 Tsp,dl
0 [prdct,np € [sg,3 [prdc[,drm > tdrtn,lhrd2 Txp,dl
0 tprdetnp € tsg3  Ldrnthrdl < prdet,drin < Ldrin,thrd2 Tsp,ddt
0 tprdet,np € lsg,3 tprdet,drtn < tdrin,thrdl Tsp,ecn
0 tprdet,np € tsga prdet,drtn > tdrtn,thrd2 Tip,ddi
0 tprdet,np € tsga tprdet,drtn < tdrtn,imt2 Tip,ecn
0 [prdct,np € tsg,S Tsp.ecn

3. Case study
3.1. Case study building and experimental setup

The case study building located in Singapore is used for commercial
purposes, as shown in Fig. 3. The building’s construction properties and
thermal environment comply with the 2015 Green Mark Platinum
Standard for Non-Residential New Buildings per the Singapore Building
and Construction Authority [45]. Office spaces in this building are air-
conditioned throughout the year during weekdays because of the tro-
pical climate.

The experiment in this research was conducted in 11 rooms on the
same floor of the case study building, including typical office scenarios:
multi-person offices, single person offices, and meeting rooms. This
office space was designed by researchers under the Chair of
Architecture and Building Systems at ETH Ziirich [46]. As shown in
Fig. 4, the total experimental area is around 276 m? with 2 multi-person
offices, 8 single person offices, and a meeting room. Each room is re-
garded as a single thermal zone, and its indoor air temperature is
controlled by the DCC individually on the basis of occupants’ behavior.

For considerations of privacy, labels and data of individual rooms
cannot be provided as the floor plan presented in this paper.

All target rooms have the same experimental setup, including sen-
sible cooling systems, environmental sensory infrastructure, and con-
trols. The sensible cooling is delivered by passive chilled beams (PCBs),
and room air temperatures are controlled by regulating the chilled
water flow rate of PCBs with motorized balancing valves.

For environment and energy perception, each room is equipped
with four types of components: (1) motion sensors for analyzing rooms’
occupancy, (2) room climate sensors for monitoring temperature, re-
lative humidity, and CO, concentration, (3) a human-machine interface
(HMI) for occupants to view room temperature and to modify

Fig. 3. Case study building for this research.
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Fig. 4. Floor plan of the case study space.
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Fig. 5. The components of sensory infrastructure in the case study.

temperature setpoints to their preferences, and (4) energy meter for
recording sensible cooling energy usage. Fig. 5 shows photos of this
sensory infrastructure, and Table 5 lists the number of them in the
entire experimental space. The energy meters were approved in ac-
cordance with EN 1434 and measuring instruments directive accuracy
class 2 [47].

The cooling operation in each single room consists of two layers: (1)
local controllers based on proportional-integral-derivative (PID) con-
trol, mainly to adjust balancing valves of PCBs to maintain the tem-
perature of an individual room at a defined setpoint level. (2) the DCC
strategy, primarily to dynamically specify room temperature setpoints
for the first layer by learning from occupants’ stochastic behavior in
individual rooms.

The proposed DCC algorithm has been developed in a MATLAB
client and executed on a workstation computer that has network access
to a BMS for collecting sensor data and controlling the local controllers.

Table 5
The total number of sensory infrastructure for the experiment.

Sensory infrastructure Number of them

Motion sensor 19

Room climate sensor (i.e. for temperature, relative humidity, 34
and CO,)

HMI 11

Energy meter 12
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Fig. 6. Weekday occupancy probability distributions (7.5-month data between 2016 and

2017).

3.2. Occupancy-related data

In this study, occupants’ movements within each case study room
are monitored by motion sensors. After transforming motion sensor
measurements of the 11 offices to occupancy data, weekday occupancy
probability distributions of the monitored 7.5 months are presented in
Fig. 6. The likelihood of occupancy in the rooms differ from each other,

Applied Energy 211 (2018) 1343-1358

and they are mainly classified into three groups according to the office
types:

e High occupancy rates in the multi-person offices, and daily occu-
pancy rates are around 0.75.

e Medium occupancy rates in the single person offices, ranging from
around 0.25 to 0.75, and likelihoods in six of eight rooms are below
0.5 in most of the daily time.

e Low occupancy rates in the meeting room, the daily occupancy rates
are less than 0.25.

As there are low occupancy rates in the meeting room and medium
occupancy rates in the single person offices, assignments of setback
temperatures during rooms’ unoccupied periods would achieve energy
savings for the rooms.

As presented in Section 2, the number of occupancy patterns is
limited to 4, and the k-means algorithm is applied to cluster occupancy
patterns based on two-dimensional data consisting of daily first arrivals
and last departures. After extracting the two-dimensional data from the
above 7.5-month occupancy dataset, Fig. 7 shows an example of oc-
cupancy pattern clusters and related distributions of daily first arrivals
and last departures in a case study room. The same learning approach is
implemented into the DCC to create the local training datasets.

3.3. Experimental study and examples of control operations

In this study, two experiments were performed in the 11 case study
rooms over nine weeks (i.e. 4.5 weeks for each experiment). They are a
baseline test and a DCC test described as follows, and the offices used
the same comfort temperature setpoint for both tests:

The baseline test is the original control strategy employed by the
case study space, using a static operation schedule for the comfort
mode. As defined by the building facility department, the case study
space is air-conditioned to predefined ‘comfort’ conditions between
7:00 and 18:00 on weekdays.

The DCC test integrates the proposed methodology into the existing
sensible cooling system according to the experimental setup illustrated
in Section 3.1. Such control in each office takes over the sensible
cooling operation from 8:00 to 18:00 by specifying operation modes
together with related room temperature setpoints in real time.
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Fig. 7. An example of occupancy patterns in an experimental room (7.5-month data between 2016 and 2017). (a) Four occupancy clusters together with the daily first-arrival histogram
(gray bars on the top) and the daily last-departure histogram (gray bars on the right), (b) the first arrival and the last departure distributions (box plot) and mean values (red cross) for
four occupancy clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. An example of the three-day DCC operations in a case study office. (a) Local training datasets Y, (b) time ranges of daily first arrivals of Yi; (i.e. [ajmin, @j,max]) and their

deviations (i.e. devjq) as well as the valid first arrival time in experimental days (i.e. acr), (c) occupancy curve in experimental days, d) temperature setpoints generated by the DCC (i.e.

Typ), room air temperature Ty;r, and four temperature levels for comfort and setback modes (i.e. Typ.cms, Tsp.dis Tip.ddi> and Tp ecn), (€) PCB sensible cooling power.

Setpoints of the comfort mode (i.e. assumed ‘comfort’ conditions)
are defined by the building facility: two rooms are set to 22 °C, and the
other nine rooms are set to 22.5 °C.

For the DCC operation, two successful examples from two rooms are
depicted in Figs. 8 and 9, respectively. Each figure presents three-day
operations with five subgraphs. In the early phase of DCC operation per
day, it selects the global training dataset from historical occupancy
data, and then starts the first learning process to cluster occupancy
patterns with k-means for local training datasets, as shown in (a).
Meanwhile, the time ranges or points (i.e. first arrivals only occur at a
time point) of daily first arrivals of the local training datasets are
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calculated, as presented in (b). After the DCC starts inferring real-time
room temperature setpoints, it closely monitors occupancy status in
each case study room as shown in (c), and it recognizes the valid daily
first arrival in the current day for defining the final training data for the
second learning process. As shown in (b), when the daily first arrival in
the current day falls into one or several arrival time ranges or points
together with their deviations of the local training datasets, these de-
signated local training datasets are regarded as the final training data.
The global training dataset is used as the training data when there is no
valid daily first arrival, or the maximum vacancy duration of the cur-
rent occupancy vector is larger than thresholds of adopted local



Y. Peng et al. Applied Energy 211 (2018) 1343-1358
Ew 0:00
K 518'00 8 m Vi
st 2 44 t. g Yil »
a) v 212:00 '
E 43 ¢ y,Icl,3
.‘3 2 6:00 ® Y
T A
'|E = 0:00 T T T ? T T T * T T T
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
The time of daily first arrival
4 " ® . ® ¥ — devj ar
"'6 3 : =z ¥ — o — [a1, min, @1, max]
b)g g 5 i i 2 5 @2, min, @2, max]
© >~ : b . —— [a3, min, @3, max]
Z 1 - e - - a
-~ i = 5 cur
T T - T T T — T T T T - T o [34,min: 34, max]
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
The time of daily first arrival
1 . : 1
z | i 5 i
g { . ; H Short presence or
) B H ! “77" invalid first arrival
3 = A ' H — ocC
o | B 5 i
° L, L P
T T T T T T T T T T T T
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
Time
From top to bottom:
E 35 Tsp,ecn
Eg o 7;p,dw
E G 30 Tsp, dl
d) g‘;_ Tsp, cmr
§ 25 —_ T,
Tair
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
Time
o 2 A
5
e)az 1 4
m —
O
a.
0 4
T T T T T T T T T T T T
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

Time

Fig. 9. An example of the three-day DCC operations in another case study office. (a) Local training datasets Y, (b) the time ranges of daily first arrivals of Yi; (i.e. [@jmin, @j,max]) and

their deviations (i.e. devj q/) as well as the first arrival time in experimental days (i.e. acy), (c) occupancy curve in experimental days, (d) temperature setpoints generated by the DCC (i.e.

Typ), room air temperature Ty;r, and four temperature levels for comfort and setback modes (i.e. Tsp,cmf, Tspdi> Tsp.ddi, and Tspecn), (€) PCB sensible cooling power.

occupancy datasets. Subgraph (d) shows real-time temperature set-
points generated by the DCC together with actual room temperatures.
Curves of sensible cooling power are shown in subgraphs (e).

4. Experimental results

This section presents experimental results of the proposed metho-
dology applied to the case study offices from five aspects. Evaluation of
control accuracy is presented at the beginning. Analysis of the comfort
and setback operations as wells as energy use and savings are illu-
strated, respectively. Cooling energy consumed by switching control
from the setback mode to comfort mode for short presence is also
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analyzed. Controlled room temperatures are evaluated and presented
lastly.

4.1. Evaluation of control accuracy

As occupants’ behavior is highly stochastic in offices, the informa-
tion learned from the learning processes are used indirectly to deduce
three setback temperature setpoints based on the rules specified in
Table 4: forecasted presence falls into which time range, and occupancy
duration is less or greater than the constraints. Thus, the accuracy
evaluation is based on the entire DCC strategy. To achieve this purpose,
two sets of evaluations with 1-min sampling time are carried out
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Fig. 10. Distributions (box plot) and mean values (cross) of the DCC control accuracy in
the case study offices.

according to specified room temperature setpoints and PCB power data.
The first evaluation (i.e. evaluation 1) calculates the control accuracy
according to Table 4 from the point of view of the real-time tempera-
ture setpoints. The accuracy calculation of the second evaluation (i.e.
evaluation 2) is based on both the real-time temperature setpoints and
PCB power. For evaluation 2, if the daily last departure (i.e. tgp,) occurs
after tye.qp, the accuracy calculation is the same as in evaluation 1. If
typrir OCCUTS between fgccsi and taesp, €valuation 2 calculates errors in
two time segments respectively: [faccsirt, taprer] and (taprirs tace,sip]- First,
control errors during [facsur> taprr] are determined by the real-time
temperature setpoint, like in evaluation 1. Second, the control errors
during (typrir, tace,sip 1 are calculated by the real-time PCB power: error is
set to 0 when no PCB power is consumed with the setback tempera-
tures, otherwise error is set to 1. The overall accuracy of the evaluation
2 is cacluated from the errors of these two time segments.

Fig. 10 illustrates distributions (box plot) and means (cross) of the
control accuracy in the case study offices based on evaluation 1 and
evaluation 2. The mean control accuracy of evaluation 1 is close to
90%, and the mean control accuracy of evaluation 2 is over 95%. As
shown in Figs. 8 and 9, the DCC sets temperature setpoints from Ty, 4 to
Tip.gat and when tgp,,, occurs earlier. For this scenario, evaluation 1 sets
the error to 0 only when temperature setpoints are assigned by , and
evaluation 2 sets the error to 0 when no PCB power is consumed. From
actual energy perspective, the DCC effectively shuts down cooling
systems after the tq,, with increasing setback setpoints step by step as
the probability of occupants presents in an office goes down.

4.2. Ratios of the comfort mode and the setback mode

Before stating results of the energy savings achieved by the DCC
operation, we analyze operation ratios of the comfort and setback
modes in the 11 case study offices over the entire DCC test period. Two
control modes (i.e. comfort and setback) with four temperature set-
points were employed to control room temperature for the purpose of
saving energy and maintaining comfortable room temperature for oc-
cupants. As shown in Figs. 8 and 9, the sensible cooling energy savings
are contributed by the setback mode. The average operation ratios of
the four setpoints in the 11 case study offices are presented in ways of
distributions (box plot) and means (cross), as shown in Fig. 11. It can be
observed that four temperature setpoints of the setback mode were
deployed in all the experimental offices by the DCC.

4.3. Energy use and savings

The energy consumption of the sensible cooling in the case study
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Fig. 12. Normalized daily average sensible cooling energy use in three types of offices
during the experiments.

rooms is calculated from energy meters installed in PCBs pipe networks
of the case study space. For evaluating energy savings with deploying
the DCC into the cooling systems, the energy use in the baseline test is
employed to calculate energy benchmarks according to a normalization
method presented in [6]. For minimizing energy impact caused by
energy patterns associated with the day of the week, the baseline and
DCC tests were deployed on weekdays with the same number of days of
the week.

For three types of rooms in the case study space, Fig. 12 presents
daily average sensible cooling consumption of the benchmark and the
DCC, and Table 6 shows energy savings of each type of offices and the
entire space achieved by the DCC.

The experimental results showed that the DCC operation success-
fully reduced the sensible energy use by making cooling service auto-
matically adapt to actual energy demands in real time. They also in-
dicated that the energy savings potential was inversely correlated with
occupancy rates within three types of rooms.

The energy savings in the multi-person offices were only 7% be-
cause of the high occupancy rates presented in Section 3.2. For the
single person offices with medium occupancy rates, a 21% reduction
was achieved. As daily occupancy rate in the meeting room is even
below 25%, the energy saving touched a high point: 52%. Across the 11
offices, the DCC saved 21% of the sensible cooling energy with reducing
unnecessary energy requirements during vacancy periods.

Table 6
Sensible cooling energy savings in three types of offices and the entire space during the
DCC test.

Multi-person Single person  Meeting The entire
offices offices room space
Energy savings 7% 21% 52% 21%

(%)
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duration slices in the entire experimental rooms, (b) to (d) ratios of daily cooling energy consumption in the multi-person offices, the single person offices, and the meeting room.

4.4. Cooling energy consumed by switching control modes for short presence

In this study, a function is embedded into the DCC structure to re-
cognize short presence - occupancy duration is less than 3 mins
(drtn < 3) - to avoid cooling down the rooms unnecessarily. However,
it is only enabled when the setback mode employs as the setpoint, that
is, the DCC keeps as the setpoint when presence is a short stay. In the
other setback conditions (i.e. Ty, and Ty gq1), this function is disabled
and the DCC reverts to the comfort mode once an occupant showed up
in an office. It is primarily to make the cooling operation respond to the
presence of an occupant quickly.

Rooms are usually occupied in segments with various lengths of
time in the daily time frame. As shown in Fig. 13(a), however, short
presence in the case study offices (orange bar) accounted for a large
ratio of the overall occupancy slices. Cooling energy consumed by
changing temperature setpoints from Ty, q and Ty, qa to the comfort
mode for such short stays (Egna,arn < 3) cannot be neglected. As shown
in Fig. 13(b)-(d), Echgma,arn < 3 accounted for 3%, 6%, and 2% of daily
cooling energy consumption in the multi-person offices, the single
person offices, and the meeting room, respectively. Across the entire
case study space, Egpgma,drin <3 took 5% of daily cooling energy. If the
DCC keeps room temperature setpoints at Ty, q or Ty, ¢t When short stays
occur in the setback mode, more energy savings can be achieved under
the condition that occupants are assumed not to be concerned with
room temperature during such momentary periods.

4.5. Controlled room temperature

As well as saving cooling energy of the offices, ensuring that the
occupants in the experimental spaces are thermally comfortable is also
one of the main objectives of this study. Each case study room is
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equipped with climate sensors to monitor indoor air temperatures in
real time, and an HMI to let the occupants check their room tempera-
tures and override setpoint temperatures according to their preferences.

To analyze and compare room temperatures controlled by the
baseline (i.e. originally scheduled cooling operation) and DCC tests
during occupied periods, we extracted the indoor air temperature of
each occupied minute from the 11 rooms. Then, for each occupied
minute, a temperature difference between the actual temperature of a
room and corresponding Ty, cm¢ is computed. Fig. 14 presents distribu-
tions (box plot) and means (cross) of these temperature deviations for
the baseline and DCC tests.

The results show that means of temperature deviations in the
baseline and DCC tests are very close: differences between their de-
viations are all less than 0.1 °C in the three types of case study rooms.
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Fig. 14. Distributions (box plot) and means (cross) of temperature deviations during
occupied periods with a 1-min resolution between 8:00 to 18:00.
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This indicates that the DCC operation showed good control perfor-
mance for maintaining room temperatures to Ty, ¢ during occupied
periods, similar to that controlled by the original scheduled cooling
strategy. For the distributions of the temperature deviations, the ma-
jority of the deviations are controlled within 0.5 °C by both baseline and
DCC operations, and only outliers are beyond that range.

To investigate whether the occupants intend to override the room
temperatures controlled by the DCC operation, we collected setpoint
shifts modified by the occupants (i.e. occupants’ feedback on controlled
temperature) with HMIs. Data shows that the time-dependent tem-
peratures controlled by the DCC were not adjusted by the occupants in
the 11 rooms throughout the whole DCC experiment.

5. Discussion

This section discusses advantages and limitations of this study. The
proposed DCC methodology has the following attractive traits.

In present-day demand-driven building control, occupancy signals
transformed from motion sensors are based on basic Boolean attribute
in the timeline. In this study, we deconstructed binary-based occupancy
vectors into three dimensions as shown in Fig. 15: (1) time-based fea-
tures, (2) quantitative features, and (3) deviation features. All three
dimensions were embedded into two proposed learning processes of the
DCC. Hence, the DCC in this study not only integrated occupants’ ori-
ginal behavior (i.e. the first two types of features), but also considered
deviations of their daily behavior (i.e. the third type of feature) to en-
hance the control reliability in light of the uncertain stochastic behavior
of occupants.

Second, we suggested two types of training datasets for the occu-
pancy learning process: the global and local training datasets. The local
training datasets are used to reduce control errors caused when k-most-
closest neighbors that are picked from the global training dataset are
not similar to the occupancy pattern in the current day. Meanwhile, the
global training dataset effectively makes the DCC respond to changes of
the occupancy pattern in the current day, such as when the current
occupancy pattern deviates from the local training datasets as time goes
on during the daily control.

Third, the DCC not only learns occupants’ next presence, but also
learns the presence duration of the remaining day. Considering the
occupants’ behavior is highly stochastic in offices [6], these two pieces
of occupancy information are only employed indirectly to deduce set-
back temperature setpoints according to our summarized rules in

Deviation features

Daily occupancy status profile

Daily last departure

Daily maximum
vacancy duration
in working hours

Rea-time occupancy status

Time-based features

Daily first arrival

Fig. 15. The occupancy-related features in the three dimensions for the DCC.
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Table 4. Additionally, three setback temperature setpoints enabled the
DCC to increase room temperature step by step as the probability of a
room not being occupied decreases for saving energy without com-
promising room temperatures during occupied periods.

Finally, it is important to highlight that the proposed DCC is an
active learning methodology, making the cooling system automatically
adapt to different office conditions with fewer human interventions
during the implementation phase. Two machine learning techniques, k-
means and KNN, are embedded in the DCC to give it learning cap-
abilities. Hyperparameters of these learning algorithms are specified in
this study: the number of clusters (kp,,) and the size of training dataset
(Ygp1) for k-mean, and the number of nearest neighbors (k) for KNN. In
the meantime, the key datasets (i.e. the global, local, and the final
training datasets), occupancy-related variables, and room temperature
setpoints are spontaneously learned and updated either every day or
every few minutes by the learning algorithms and the rules summarized
in this study. To generalize the DCC for diverse application require-
ments and to port this methodology to other systems easily, we pack
three sets of variables with six parameters into an initialization func-
tion, and only these parameters are required to be configured by end
users: definitions of the DCC operation period, threshold values of first
arrivals and last departures, and threshold values of presence durations.
The first type is specified by end users according to their energy po-
licies, the last two types are mainly linked to their energy-conscious
perspectives as we presented in Section 2.5.

In contrast to the above advantages, our study also has some lim-
itations as follows.

The motion sensors used in the case study building apply a change
of value method to sample movement signals. A static period (i.e.
10 mins) was applied to interpret motion data in terms of occupancy
due to high cumulative probabilities of short inactivity slices (i.e. less
than 100ss) created by such sampling method. However, for motion
sensors with other sampling methods (e.g. integrating a delay time
setting to maintain a captured status for a minimum duration after
detecting motions), adaptive periods that transform motion data to
occupancy information can offer an opportunity to further reduce en-
ergy consumption [35]. To make the DCC generic, both static and
adaptive periods could be integrated into the control strategy to reflect
motion sensors with different sampling methods.

The case study building is used for commercial purposes, so the tests
in this paper were conducted over 9 weeks in the 11 offices. The ex-
perimental time and the number of the case study offices are not sig-
nificant in contrast to product-ready control systems. Both may limit
the generalizability of the results illustrated in this paper. Though this
study faces such limitations, the real-world offices evaluated by this
work captured high variations in occupants’ behavior across three main
office scenarios: single person office, multi-person office, and meeting
room. This was enough to explore the inverse correlation between en-
ergy savings and occupancy rates as well as how building energy use
can be reduced by a DCC operation without compromising room tem-
peratures during occupied periods in practice.

6. Conclusions

The methodology illustrated in this paper has been successfully
conducted under real-world conditions in 11 rooms of a commercial
building. The experimental results show that a 7-52% energy saving
was obtained by the adaptive cooling system, depending on occupancy
rates, with average savings in the order of 21% across the entire space,
as compared to using the conventional control system. The reviewed
occupancy demand-driven HVAC systems with machine learning tech-
niques presented 8-28% energy reductions, which is a similar range to
the achieved energy savings of this study. It was further found, at least
in this study, that the achieved energy savings are inversely correlated
to the occupancy rates of individual rooms.

Energy could have been further saved by forcing the setback
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temperature setpoints to be maintained when short presences are de-
tected in setback mode. Short presence frequently occurs in the offices
as analyzed in Section 4.4. In this study, a short-presence-detection
function is employed to recognize if a current presence is a brief stay or
not. This function needs 12 mins to finish the recognition, which is
rather long. It was therefore only applied to avoid cooling down the
rooms for short stays that occur when is assigned to the setback mode.
However, from the assessment shown in Section 4.4, about 2% to 6%
further energy saving could be achieved further by maintaining the
setback temperature setpoints instead of reverting to the comfort mode
when short presence occurs in the setback modes with Ty, g and Ty, gar-.
An advanced sensor network that could quickly identify whether a
presence is short or not would be the future work to realize these ad-
ditional energy savings.

During occupied periods, the means of temperature deviations in
the DCC test phase is less than 0.1 °C against conditions measured
during the baseline test phase. We did not observe that the occupants of
the 11 offices overrode the DCC-controlled room temperature with
HMIs either.

According to the above experimental results, it is safe to assume that
the proposed control methodology not only reduces cooling energy use,
but also does not compromise room temperatures during occupied
periods.

In this paper, a machine-learning-based cooling control strategy for
office buildings was proposed. The proposed control strategy is not
limited to space cooling control, but could also be extended to heating
and ventilation control using the same methodology to infer humidity
and CO; concentration setpoints. Complicated algorithms may be dif-
ficult to embed into local controllers due to limits of memory and
computing [48]. For controlling HVAC systems of a much larger
number of rooms, it is possible to integrate the proposed DCC in ex-
isting computer-based BMS as an application function.
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