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ABSTRACT | Heating, ventilation, and air conditioning (HVAC)
systems are an important target for efficiency improvements
through new equipment and retrofitting because of their large
energy footprint. One type of equipment that is common in
homes and some offices is an electrical, single-stage heat pump
air conditioner (AC). To study this setup, we have built the
Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy
Efficiency (BRITE) platform. This platform allows us to actuate
an AC unit that controls the room temperature of a computer
laboratory on the Berkeley campus that is actively used by
students, while sensors record room temperature and AC
energy consumption. We build a mathematical model of the
temperature dynamics of the room, and combining this model
with statistical methods allows us to compute the heating load
due to occupants and equipment using only a single temper-
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ature sensor. Next, we implement a control strategy that uses
learning-based model-predictive control (MPC) to learn and
compensate for the amount of heating due to occupancy as it
varies throughout the day and year. Experiments on BRITE
show that our techniques result in a 30%-70% reduction in
energy consumption as compared to two-position control,
while still maintaining a comfortable room temperature. The
energy savings are due to our control scheme compensating for
varying occupancy, while considering the transient and steady
state electrical consumption of the AC. Our techniques can
likely be generalized to other HVAC systems while still main-
taining these energy saving features.

KEYWORDS | Air conditioning (AC); building automation; energy
efficiency; learning; model-predictive control (MPC)

I. INTRODUCTION

Buildings account for 73% of the electricity and 40% of
greenhouse gas emissions in the United States [1], [2].
Heating, ventilation, and air conditioning (HVAC) com-
pose 33% of building energy usage, making this an attrac-
tive target for reductions [1]. Several parallel directions are
being taken towards the aim of reducing HVAC energy,
one of which is the design of new, more efficient equip-
ment. However, buildings and equipment are often slowly
replaced [3]. This has led to interest in retrofitting HVAC
to improve efficiency.

0018-9219/$26.00 ©2011 IEEE
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The simplest way to retrofit is to only change the soft-
ware that controls the HVAC, but this is a challenging
problem because of the large variety of physical effects that
are used by HVAC equipment. Many homes use a single-
stage heat pump that cools air at a constant rate for the
entire building. In contrast, some large buildings use va-
riable air volume (VAV) systems to centrally cool air that is
partitioned into different amounts for each room. Some
HVAC systems incorporate thermal storage tanks that
freeze liquid at night and then provide cooling by allowing
it to melt during the day.

HVAC equipment requires a separate design process
tailored to its particular physical modalities. Within the
cyber-physical system (CPS) community, the focus of re-
search has been on modeling and control for VAV systems
[4]-[7] or thermal storage tanks [8]. Occupants and equip-
ment generate heat that raises the temperature of rooms,
and existing HVAC control struggles with these effects
because of their significant variation over time. Current
work in this area concerns combining occupancy sensors
with models of human behavior to estimate the number of
occupants in different rooms [9].

We focus on reducing the energy usage for an electric,
single-stage heat pump air conditioner (AC) that cools a
single area, and our work is distinguished from past work
by three aspects. First, this HVAC equipment is common
in homes and has not been extensively studied by the CPS
community. Second, modeling and statistics are used to
estimate the heating load (i.e., amount of thermal energy
transfer to the building) of occupants and equipment using
only a temperature sensor. Third, we design a control
scheme that improves efficiency by explicitly adapting to
the occupancy heating load. These techniques are expected
to generalize to other HVAC systems, though implementa-
tion and modeling details will vary depending upon equip-
ment physics.

The second point is important from a general CPS
viewpoint. One approach to solving CPS problems is to
study the integration and communication of large numbers
of sensors. For this particular application, we take an al-
ternative approach. We evaluate how more intelligent
computation may enable a reduction in the number of
sensors needed to achieve a given task. This is done by
constructing mathematical models that incorporate the
physical aspects of the system, and then designing sta-
tistical schemes that combine these models with measure-
ments to reduce the amount of needed infrastructure.

In order to conduct experiments, we have built the
Berkeley Retrofitted and Inexpensive HVAC Testbed for
Energy Efficiency (BRITE). The BRITE testbed controls
the room temperature of a computer laboratory on the
Berkeley campus that is actively used by students. A com-
puter actuates the AC unit by relaying computed control
actions through a local area network (LAN) to the thermo-
stat. Sensors are able to measure the room temperature
and power consumption of the AC.

BRITE is a living laboratory, and so its large variations
in weather and occupant behavior make it difficult to di-
rectly compare different control strategies. To overcome
this challenge, we cyber-physically compare control meth-
ods using a mixture of experiments and simulations. This
allows for a more fair comparison by using identical wea-
ther and occupancy conditions, but this does introduce
some error into the comparisons because of modeling
mismatch. To alleviate these issues, we alternate between
the control schemes we use for experimentation and
simulations.

We implement a new control technique on BRITE
known as learning-based model-predictive control (MPC)
[10], which has provable properties considering its safety
and robustness. It combines models with statistics to esti-
mate occupancy heating load from only temperature mea-
surements and then compensate for it within the control
action, thereby reducing the amount of room overcooling
and thus saving energy. Our experiments show that
learning-based MPC reduces energy consumption by
30%-70% compared to two-position control, which is
the control scheme used by a typical thermostat [11].

A. CPS Aspects of Single-Stage Heat Pump Control

Heat pumps [12] are commonly used in homes to pro-
vide AC, and they use electrical energy to run a motor that
compresses gas. It is the subsequent expansion of this
compressed gas that is able to provide cooling for air that is
then delivered to the entire building. Most heat pumps
have motors with one fixed speed and are called single
stage. Multistage heat pumps can run the compressor
motor at different speeds, but they are less common. We
focus on single-stage equipment in our work because
1) this is the existing equipment in the room that we use in
BRITE, and 2) the control scheme we develop can be ex-
tended to multistage equipment through the use of appro-
priate pulse-width modulation (PWM).

The physics of heat pumps leads to particular energy
characteristics, and similar behavior occurs in other HVAC
systems. Understanding these features is important for the
design of efficient HVAC systems, and is reflective of
insights gained from a CPS viewpoint. A tighter integration
of the software to the physics of the HVAC allows for
improved performance by reducing the conservativeness of
the control schemes. In the case of HVAC, comfort is
equivalent to keeping the room temperature within a range
of temperatures [13], and conservativeness is how close the
temperature is kept towards the boundaries of this range.

Keeping temperature near the boundaries of comfort
uses less energy, because less heat transfer is required. In
the case of AC, two-position control means that the AC
turns on when the room temperature exceeds T,, and
turns off when the temperature is below Tof. Because of its
physics, the AC continues to cool for a few minutes even
after it is turned off [14]. This actually represents overcool-
ing and is a major cause of inefficiency. The obvious fix is
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to set Tofr to be nearly identical to Ton; however, this is not
practical because of the physics of the equipment.

A heat pump has high transient power consumption
when it is turned on, and then it uses lower amounts of
power at steady state. This transient power is due to inrush
current (a brief period of high current flow when turning
on the electric motor that drives the compressor in the
heat pump) and an increased load on the electric motor at
startup (the pressure of the gasses in the heat pump are
initially out of equilibrium [15]). The transient power
consumption of a heat pump puts a limit on its switching
frequency, because otherwise the equipment behaves inef-
ficiently and can also be damaged.

The high transient power usage acts as a penalty for
turning the AC on. Efficient control schemes need to ba-
lance the efficiency from turning the heat pump on and off
frequently (this reduces overcooling) with the added ener-
gy consumption and physical fatigue of frequent switching.
This tradeoff can be handled by the learning-based MPC
technique, which picks control actions for the AC that
minimize a cost (consisting of steady state energy con-
sumption, transient energy consumption from switching,
and deviation from desired temperature) subject to the
thermal dynamics of the room and constraints on the
allowed temperatures of the room.

IT. BERKELEY RETROFITTED AND
INEXPENSIVE HVAC TESTBED
FOR ENERGY EFFICIENCY

BRITE is a system for testing different control strategies on
an AC unit that cools a computer laboratory on the
Berkeley campus, and it is shown in Fig. 1. Though it is

built using commodity parts, the computers can be re-
placed with microcontrollers. The strength of this struc-
ture is that it scales to building-wide systems. Moreover,
our MPC schemes are computationally scalable because of
their convexity.

In this testbed, the LoCal server gathers sensor data
and stores this in a simple measurement and actuation
profile (sMAP) database [16]. A control computer accesses
the Internet and LoCal server to get weather forecasts and
sensor data, and it runs a learning-based MPC scheme that
computes a control input that is sent through the LoCal
server to the thermostat. The thermostat transmits a
corresponding signal to the AC.

A. LoCal

The Berkeley LoCal project aims to produce a network
architecture for localized electrical energy reduction,
generation, and sharing by examining how pervasive in-
formation can fundamentally change the nature of these
processes [17]. A key component of this is the use of SMAP
[16] to exchange physical data about the systems involved.
This allows producers of physical information to directly
publish their data in a format for consumption by a diverse
set of clients. We use temperature measurements from a
networked thermostat in BRITE, though we also have the
capability to measure plug-load [18] and wireless temper-
ature readings. The ability to easily integrate streams of
sensor data is critical to the scalability of BRITE to entire
buildings.

B. Room, Air Conditioner, and Thermostat
The BRITE testbed shown in Fig. 1 is deployed in a
student computing laboratory on the ground floor of a
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Fig. 1. The Berkeley Retrofitted and Inexpensive HVAC Testhed for Energy Efficiency (BRITE) is a system built on the Berkeley campus that
allows testing of different control strategies for controlling an AC in order to explore tradeoffs between energy consumption and

tracking a temperature setpoint.
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large engineering building. The room is 640 square feet,
has external windows on its south and west walls, and
contains 16 desktop computer workstations and two laser
printers. Occupancy of the room peaks at over 20 in-
dividuals and is constantly varying depending upon the due
dates of projects, assignments, and exams. An important
reason that this room was chosen for the testbed is that it
has its own HVAC equipment, which allows us to do
experiments independent of other rooms.

A Proliphix brand NT160e model thermostat controls
the AC. It is a modern thermostat with networking func-
tionality that allows computers on a shared network to
communicate with it and control it. We can transmit
commands to the thermostat and also receive diagnostic
information on the thermostat settings, current HVAC
state, and room temperature.

C. Control Computer

We use a dedicated control computer to avoid disrupt-
ing processes running on the LoCal computer, though their
combined functionality can be implemented on a single
microcontroller. The control computer runs a 64-b version
of the Ubuntu operating system, and the control loop is
implemented in MATLAB: The learning-based MPC [10]
uses the SNOPT solver [19] from the TOMLAB library, and
polytopes are handled using the MPT toolbox [20]. A
Python script downloads weather forecasts from the
National Oceanic and Atmospheric Administration’s
(NOAA’s) National Weather Service.

D. Metrics for Human Comfort

The objective of BRITE is to minimize energy con-
sumption while keeping occupants comfortable. However,
there are multiple ways to quantify comfort. The ANSI/
ASHRAE standards [13] are defined in terms of the pre-
dicted mean vote (PMV), which is a complex function of
indoor air temperature, human activity, relative air velo-
city, the occupants’ clothing, and other variables that are
difficult to measure [21]. The Occupational Safety and
Health Administration (OSHA) [22] does not have regu-
lations but provides guidelines of 68-76°F (about 20 °C-
24.4 °C). Alternative metrics are defined in terms of
temperature deviation: category A, B, and C thermal re-
quirements [13], respectively, dictate a temperature range
of 2°C, 4 °C, and 6 °C.

These alternatives specify temperature bands and sim-
plify the design of HVAC systems. In experiments on the
BRITE testbed, we keep the temperature near the middle
of comfort (22 °C) and try to satisfy category A require-
ments, because these are the strictest and consume the
most energy. More specifically, category A is used as a
range preference for the learning-based MPC and
category B are hard constraints on the temperature range.
Future directions can consider smart methods for switch-
ing between different category requirements based on, for

Transient Power (0.01 kWh)
Steady State Power (0.35 kWh)
T

Minutes

Fig. 2. Experimental data of a typical power consumption profile
during actuation in the BRITE testbed are shown. The first vertical
dashed line indicates the time when the heat pump turns on, the
second indicates the time when the power reaches steady state, and
the third indicates the time when the heat pump turns off. For this
particular power profile, the amount of total energy consumed by the
transient and steady state is labeled in the legend.

instance, network-level load and demand signaling or
occupancy estimates.

ITII. ELECTRICAL CHARACTERISTICS
AND ENERGY CONSUMPTION OF
A SINGLE-STAGE HEAT PUMP

Fig. 2 shows experimentally measured data of a typical
power consumption profile for the HVAC in BRITE. A
striking feature is that there are both transient and steady
state behaviors. There is a transient spike in power con-
sumption immediately after the heat pump is turned on
that lasts for about 1 min, before the power consumption
reaches a steady state. Intuitively, the large transient is a
penalty for turning the heat pump on. Physically, the
transient power consumption is due to inrush current
drawn by the electric motor in the compressor of the heat
pump, as well as due to nonequilibrium pressure condi-
tions in the heat pump [15].

As mentioned earlier, this profile highlights some im-
portant issues regarding energy usage. The transient spike
in power consumption suggests an objective that mini-
mizes switching. This is not typically considered in an
explicit manner, and in fact makes the implementation of a
controller in digital hardware difficult unless some approx-
imation is used. Furthermore, the steady state energy
usage is linear in the control, which matches the cost used
in [5] and differs from the more commonly used quadratic
cost [6].

A. Pulse-Width Modulation Control

The single-state heat pump is strictly speaking a hybrid
system [23], [24] because it has two modes corresponding
to the pump being on or off. Fortunately, we can consid-
erably simplify the design of a controller by considering
sampled control. As such, we use MPC to compute a new
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control action u[k] at intervals of once every 15 min. We
chose this rate because switching more frequently than
once every 10-15 min can physically damage the heat
pump. PWM is used to convert the discrete time control
ulk] into a continuous signal that turns the AC on or off
[25], and so u[k] can also be interpreted as a duty cycle.

There is an important note to make regarding why the
constraints on the input for the MPC are u[k] € [0, 0.5].
The reason for the choice of 0.5 as an upper value is
because the thermostat does not stop cooling the room
when it is turned off. This is discussed in more detail in
Section IV, but the choice of 0.5 ensures that the control
action at one discrete time sample does not affect the
control action at the next one.

B. Measuring the Electrical Energy
Consumption in BRITE

It is important to be able to compute the energy con-
sumed by the AC in the BRITE platform, given the input
that the AC receives. An estimate of the energy consump-
tion is used in the cost function of MPC, and it is useful for
being able to compare different control schemes. To be
able to provide this equation, we need to make a few defi-
nitions. Define the vector w,, = (u[m]...u[m+ N —1]).
The term ||u,,||, counts the number of nonzero entries in
the vector u,,. Also, the values r, A are constants which are
used to compute the energy consumption. The value N is

the number of discrete time steps (recall that each time
step corresponds to 15 min) over which the energy con-
sumption is to be computed.

The steady state energy consumption of the AC over
N/4 hours in units of kilowatt hours (kWh) is given by

N0 1/4 - u[m + k], where r = 3.7 kW is the average rate
of steady state energy consumption in the BRITE platform
(compare to Fig. 2) and the value 4 is used to compensate
for the fact that u[m + k] is the control for 1/4 of an hour.
Furthermore, the AC consumes A = 0.015 kWh of energy
every time we turn the AC on; this corresponds to the area
of the triangle in Fig. 2 formed by the transient energy.
The total energy used over N time steps is given by

N-1

Eactual = Zr/4 : u[m + k] + )\”quHO'
k=0

@)

Unfortunately, the |||, term is not convex in Uy,
Convexity is important for the computations of the MPC
that has to solve an optimization problem at each step. To
simplify the computations, we make a standard convex
relaxation [26] and replace the term ||uyl|, with || yl;-
This relaxation is powerful: When it is used in the cost
function of an optimization problem, it actually leads to
having many of the u[m + k| be equal to exactly zero [26].
In this way, it can reduce switching of the AC.
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This approximation yields a convex equation for the
energy consumed Zi\]:_ol r/4 - ulm+ k] + Al|wy,|;. How-
ever, we have u[m -+ k] > 0, and so we can further simplify
the convex cost for energy consumption to

Z
-

Econvex (r/4+ ) - ulm+ k. (2)

T
(=]

What is surprising about this is that a cost for energy that is
linear in the length of control action automatically con-
siders a cost for switching, as long as the inputs u[m -+ k]
are constrained to be nonnegative. Stated in another way,
this means that a cost that is linear in the duty cycle of the
control inherently considers the tradeoff between switch-
ing too frequently and the length of the duty cycle.

In practice, (1) is used if the actual energy needs to be
computed. On the other hand, (2) is used if a control
action needs to be computed by the MPC. Having these
two formulations gives considerable flexibility.

IV. SYSTEM IDENTIFICATION
OF COOLING DYNAMICS

An important step towards realizing efficient control
schemes for the BRITE testbed is building a mathematical
model that describes the impact of weather, occupancy,
and AC operation on the temperature of the room. It is
important because all MPC schemes inherently require a
nominal model in order to be able to optimize system
performance. More importantly, identifying a model
allows us to estimate the heating load due to occupancy
from only temperature measurements. This enables eval-
uation of the importance of occupancy [6], [27] and tech-
niques that compensate for it.

Though building simulator software [28], [29] models
complicated thermodynamic and fluid effects, experimen-
tal data collected from buildings show that linear models
with exogenous inputs [4]-[6], [27] can often be used to
describe many rooms. The main physical effect is convec-
tive heat transfer and is described by Newton’s law of
cooling. This is a linear ordinary differential equation
(ODE), and so it may be abstracted as a resistor—capacitor
network [4]-[6].

A. Discrete Time Model

There is a “delay” from when the AC is turned off and
when it stops cooling the room, due to the dynamics of the
heat pump. Specifically, the evaporator which cools the air
does not instantly warm up and continues to cool air for
some time after the heat pump is turned off [14]. We begin
with a discrete time model where each time step is sepa-
rated by T; = 15 min. The advantage of this approach is
that the AC behavior gets lumped into a single term that
encompasses the modes where the AC is on and then
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turned off but still cooling. This makes it easier to do the
modeling.

With this approach and inspired by the physics of
convective heat transfer, we start with the model

Tln + 1] = k,T[n] — keu[n] + kyw(n] + q[n] (3)

where T[n] € [15,30] is the temperature of the room in
degrees Celsius, k, > 0 is the time constant of the room,
ke > 0 is the change in temperature over 15 min in degrees
Celsius caused by cooling for a duty cycle of u[n] € [0, 0.5],
ky > 0 1is the time constant for heat transfer from the room
to the outside, w[n] is the outside temperature in degrees
Celsius, and q[n] is change in temperature over 15 min due
to the heating from occupancy of humans and equipment
within the room, as well as other external inputs, in de-
grees Celsius. The time constants here are dimensionless.

B. Parameter Identification

We collected data from 12:00 p.m. to 5:30 A.M. on a
weekday using the BRITE testbed. This portion of the day
was used because it exhibits a variety of occupancy levels.
The room is actively used by students during the afternoon

and evening, with fewer students using the room late at
night and early in the morning.

Generally speaking, parameter estimation is usually
more accurate when the control inputs are independent of
the system states or external inputs (i.e., weather and oc-
cupancy). To ensure that this was the case, we actually
applied a random input with uniform distribution over
[0, 0.5] at each discrete time step; the corresponding PWM
control is shown in Fig. 3(a). Because this only needs to be
done once and over a span of about a day, it may be rea-
sonable to allow the temperature in actual implementa-
tions to be unregulated for this day. Future work includes
designing methods that keep the temperature in a com-
fortable range while still sufficiently exciting the system.

Because we have measurements of T, w[n], and u[n], the
model is linear with respect to the parameters k,, k., and
k. On the other hand, q[n] is not known and is expected to
be highly nonlinear with respect to time, because it incor-
porates heating due to human occupancy and equipment in
the room. Consequently, standard linear system identifi-
cation techniques cannot be used. Identification of models
with the form given in (3) more generally falls into the
class of problems known as semiparametric regression of
partially linear models [30], [31]. An alternative approach
is to parametrize q[n], with say a polynomial or spline basis,

T [ T T I T [ I T
L1
o
| | | | | | | | |
12PM 2PM 4PM 6PM 8PM 10PM 12AM 2AM 4AM
Time
(a)
7.5 I T T T T T
o 7t -
6.5 | | | | | | | | |
12PM 2PM 4PM 6PM 8PM 10PM 12AM 2AM 4AM

18 | | | |
12PM 2PM 4PM 6PM 8PM 10PM 12AM 2AM 4AM
Time
(@]

Fig. 3. At each discrete time step, we applied a randomly generated input, which is the duty cycle of the PWM over 15-min periods, taken
from a uniform distribution ranging over [0, 0.5]. This was done over a period of the day (12:00 a.m. to 5:30 a.m.) during which the room is both
in and not in use. Using semiparametric regression [31], we identified both a discrete time model (4) and the term q(n] which is given in

units of degrees Celsius and includes heating due to occupancy, equipment, and other external inputs. The measured room temperature is
given in units of degrees Celsius by the solid line, and a simulation of our model in units of degrees Celsius is shown by the dashed line.

The simulation uses the same inputs as provided to the BRITE platform over this range, and the initial condition of the simulation is taken

to be the experimentally measured temperature. The simulation has a root-mean-squared (RMS) error of 0.10 °C. (a) Random PWM input.

(b) Heating due to occupancy. (c) Experimental (solid) and simulated (dashed) temperature.
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and then identify all parameters using nonlinear regres-
sion. The difficulty with this is the uncertainty associated
with q[n].

Using the technique given in [31], we identified the
parameters of the model

Tln+ 1] = 0.64 - T[n] — 2.64 - u[n] 4+ 0.10 - w[n] + gq[n]
4)

where g[n] is shown in Fig. 3(b). The experimental room
temperature is the solid line in Fig. 3(c). Similarly, the
temperature simulated by the model (4) is the dashed line
shown in Fig. 3(c), and the initial condition for the simu-
lation was taken from the experimental measurements.
Furthermore, the simulation was conducted with the same
inputs as were applied to the real BRITE system. The RMS
error of the simulation is 0.10 °C. The plots show that the
model fits reasonably well to the measured temperature
data.

C. Impact of Occupancy

The identified model (4) shows that the role of occu-
pancy is significant in the temperature dynamics of the
room, confirming the intuition of [6] and results of [27].
The function g[n] has an average value of 6.98 °C, and it is
highly nonlinear with respect to time: It varies by up to
0.61 °C depending on what time of day it is. Furthermore,
there are fluctuations over both long and short time
horizons.

The heat generated by occupancy and equipment q[n]
displays interesting features. The room is a computer
laboratory used by students at their own convenience and
shows characteristics consistent with this role. The heat
input q[n] increases from lunchtime and peaks at 1 p.m.,
while the outside temperature peaks at 2 p.Mm. The
occupancy has quick changes in its direction at 3 p.M.
and 5 p.M. Finally, it is relatively constant from 8 p.m. to
5 a.M., which is typically when there are few or no students
in the room.

The large fluctuations have a major impact on the de-
sign process of a control scheme. This is because the
nominal model for which a controller is designed can be
inaccurate by 0.61 °C (in our case) because of varying
levels of occupancy. This causes issues with respect to ef-
ficiency, because standard MPC requires accurate models
to provide high performance. It is for this reason that we
make use of learning-based MPC [10] to design the con-
troller. It will estimate occupancy by measuring the tem-
perature of the room and comparing it to what is expected
by the model (4).

D. Modeling the Two-Position Control of Thermostat
For the purpose of comparing the energy consumption
of different control strategies, it is useful to identify a
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model of the two-position control of the thermostat. The
thermostat does its control in continuous time, and so this
model is an ordinary differential equation. Part of the
model is derived from a statistical analysis of temperature
data from BRITE gathered over a 20-h period. On average,
the thermostat turns the AC on when the temperature
reaches 22.8 °C (standard deviation of less than 0.1 °C),
and it turns the AC off when the temperature reaches
22.4 °C (standard deviation of 0.1 °C). The thermostat has
a feature called a heat anticipator that adjusts the top and
bottom temperature thresholds, in an effort to conserve
energy and reduce overcooling. We do not model this
behavior. Furthermore, it takes the AC an average of 354 s
(standard deviation of 75 s) to stop cooling the room after
it is turned off. Though this is due to the internal dynamics
of the heat pump, we approximate this by assuming that
the AC stops cooling after a fixed time.

We again used semiparametric regression on data from
BRITE to estimate a continuous time model for the two-
position control. The time constants for the room and heat
transfer to the outside were taken from the discrete time
model (4) and converted into continuous time constants by
doing the reverse of an exact discretization. The model
identified is

T=-50x10"*-T+14x10"*

cw(t) —1.2x 1072 +4q(t)  (5)

if the AC is turned on or for the first 354 s after it is turned
off. Otherwise, the dynamics are given by

T=-50x10"""T+14x10"* w(t)+q(t). (6)

In our model, the AC turns on when the temperature ex-
ceeds Ty, = 22.8 °C, and it turns off when the tempe-
ratures goes below Ty = 22.4 °C.

Visually examining the measured [Fig. 4(a)] and simu-
lated [Fig. 4(b)] temperature under two-position control
indicates that there are several modeling errors; many of
these are previously mentioned, but we collect them into
one location for clarity. The temperature in the simulation
rises slower than on BRITE, and this indicates that the
identified time constant is slower than it should be. Fur-
thermore, the model does not incorporate the internal
dynamics of the heat pump or the thermostat’s heat anti-
cipator logic. Also, there is variation in the steady state and
transient energy consumption that is not captured in (1),
which is used to make energy estimates.

Despite the modeling errors and simplifications, the
simulation and (1) are reasonable proxies. The true
[Fig. 4(a)] and simulated [Fig. 4(b)] temperatures of the
BRITE platform under two-position control over a period
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Fig. 4. The thermostat used two-position control to maintain the temperature. Its average on and off temperatures were T,, = 22.8 °C and

Toif = 22.4 °C, and these are shown by the solid, horizontal lines. The experimentally measured temperature is shown in degrees Celsius.
Semiparametric regression was used to identify a continuous time model, and a simulation of this model using experimentally measured
temperature as the initial condition is shown in degrees Celsius. The control of the simulation is different than the experimental control, and
it was determined using the T,, and T values. The energy estimated by the simulation is 9.0 kWh, and (1) applied to the measured inputs
computes 8.6 kWh; this is in contrast to the measured consumption of 8.6 kWh. Despite modeling errors, the energy estimates differ from the
true value by only 5% and less than 1%. (a) Experimental temperature. (b) Simulated temperature.

starting at midnight share similar qualitative features. The
occupancy heating q(t) is not shown because it displays
characteristics similar to Fig. 3(b) and that in [27]. More-
over, the true energy consumed by the AC was measured to
be 8.6 kWh, computed by (1) to be 8.6 kWh, and simulated
to be 9.0 kWh. This represents an error of less than 1% and
5%, respectively.

The overshoot of going below To seen in both the
measured and simulated temperatures is in some sense
wasted energy because it represents overcooling of the
BRITE space. And even though the thermostat in BRITE
has a heat anticipator that adjusts the T, and Ty of the
two-position control, it cannot adequately compensate for
variations in weather and occupancy. The learning-based
MPC scheme we have developed can compensate for these
factors, and so it can prevent overcooling and thus save
energy.

V. LEARNING-BASED MPC OF BRITE

Safety and robustness can be guaranteed with approximate
models, but maximum efficiency requires accurate models.
This tradeoff has driven research in adaptive control [32],
[33] and learning-based control [34]-[36]. Statistical
methods by themselves cannot ensure robustness [37],
[38], and so the approach of learning-based MPC [10] is to
begin with an approximate model of the system and refine
it with statistical methods. It is a rigorous control method
that 1) handles state and input constraints, 2) optimizes
system performance with respect to a cost function, 3) uses
statistical identification tools to learn model uncertainties,
and 4) provably converges.

The control situation is as follows. We have a model (4)
for the cooling dynamics of the BRITE room, and we have
constraints on the maximum (24 °C) and minimum tem-
perature (20 °C) to ensure comfort for people in the room.
Preliminary experiments [27] made use of tube MPC [39]-
[41] (a form of robust MPC [42]) to ensure that these
constraints were never violated despite varying occupancy
and uncertainties in the weather forecast. However, test-
ing over an extended period of time showed that the robust
MPC described in [27] was too conservative because, when
tracking a desired temperature of (22 °C), the temperature
rarely approached the constraints.

Consequently, we began to test standard linear MPC
for its ability to stay within the desired temperature range.
This control scheme had the same property in our tests—
that it kept the room temperature within the constraints. It
is important to remember this fact that a standard linear
MPC ensures constraint satisfaction. However, the energy
efficiency of this base scheme was lacking. It was unable to
stay close to the desired (22 °C), and it could use more
energy than two-position control of the thermostat. Be-
cause of this, we implemented a learning-based MPC
technique to control the room temperature.

A. Special Case of Learning-Based MPC

The main idea of this technique [10] is that we de-
couple performance from robustness. By robustness, we
mean whether an MPC scheme can ensure constraint sa-
tisfaction despite modeling errors and other uncertainties.
Linear MPC itself has certain robustness properties [43].
As a practical issue, our tests on the BRITE testbed show
that standard linear MPC gives sufficient robustness. In
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more general cases, we would need to use tube MPC to
ensure enough robustness for learning-based MPC [10].

We use a tilde to denote the temperature predicted by
the learning-based model, an overline denotes the
temperature predicted by the linear model with constant
occupancy term 6.98 °C, and no overline indicates the
measured temperature. The control action at time m, with
temperature T[m|, control horizon N = 20 (5 h), weight
p = 0.075, and desired temperature Ty = 22 °C is given by
the minimizer to the following optimization problem:

min, ZN: p- (TIm+k — Tg) + Nil(r +A) - ulm + kK
k=0 k=0

(7
st. Tm+i =0.64-Tm+i—1] —2.64 - um+i—1]
+010m+i—1+qm+i—-1  (8)
Tm+i =064 -Tim+i—1 —2.64 -um+i—1]
+0.10 - wim+i—1] +6.98 9)
T[m +1i] € [20,24] (10)
ulm +i—1] € 0,0.5] (11)
fori=1,...,N. The problem (7) generates an input u[m]|

that minimizes the expected future performance of BRITE
with respect to a cost function that encodes energy con-
sumption and temperature deviation. Here, the term §[n]
represents the predicted amounts of occupancy and is
computed using learning. In our unoptimized MATLAB
code, this computation (7) takes between 1 and 2 s. It is
easily scalable to larger problems because (7) is simply a
quadratic program.

The optimization problem (7) decouples performance
and robustness in the following manner. Robustness is due
to the constraints (9) which are nothing more than the
identified model (4) with constant occupancy. Perfor-
mance is due to the use of (8) in the cost function. The
intuition is that the cost depends on the learned occupancy
q through (8), and the control is chosen such that the MPC
without learning that is sufficiently robust (4) would
satisfy the temperature and control constraints.

There are several important things to note about this
formulation (7). The cost function contains 1) p - (T[m +
k] — Ty)* that represents deviation from the desired tem-
perature and 2) the convex energy (2). This explicitly
controls the tradeoff between keeping the temperature
close to a comfortable value and the amount of energy
used, and the value p = 0.075 was chosen because it gives
a good tradeoff. Also, the convex energy (2) encourages a
tradeoff between minimizing switching and duration of
keeping the AC on, as discussed in Section III-B.
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B. Learning Occupancy

Estimating occupancy is a detailed process that re-
quires combining models of human behavior with sensors
[9]. The BRITE platform faces an additional challenge be-
cause the occupancy varies immensely over the span of
days and weeks, depending upon when assignments and
projects are due. Some of the occupancy, such as for as-
signments, will likely be periodic in nature; other occu-
pancy, like for projects, is more irregular and harder to
predict. Furthermore, we need to know the heat generated
by occupants and their use of computer equipment in the
room for the purposes of energy efficient control. The
correlation between the number of individuals in the room
and the heat load will likely vary depending upon how
many computers are in use.

Instead of relating the number of individuals in the
BRITE room to the heat load g[n], we focus our efforts on
estimating this q[n] directly from the temperature mea-
surements and our model (4). We use the estimate

glm+1i] = T[m] — (0.64 - T[m — 1]

—2.64-um—1]+ 010-wm—1]) (12)

for i =0,...,N — 1. The intuition is that the occupancy
heating q[n] is the discrepancy in what the linear model
without the occupancy term 6.98 predicts the temperature
at the next time step is and what the actual temperature is.

The approach we take in this paper is to use the sim-
plest possible estimate—more accurate estimates of q[n]
taking into account specific models will only improve the
energy efficiency of the BRITE testbed. An obvious exten-
sion is to fit our estimates to curves of best fit (e.g., a line
or parabola) to compensate for the time-varying nature of
the occupancy. Other extensions are to incorporate models
of human behavior and other sensors.

We used this estimate of the occupancy for several
reasons. As mentioned, this is the easiest estimate in terms
of modeling: We do not need to worry about how to model
long and short term human behavior. Also, it is well be-
haved. Extrapolations using curves of best fit can signifi-
cantly overestimate and underestimate on long time
horizons. Finally, this estimate is easy to compute and
shows that the learning can be done in a scalable manner.

VI. EVALUATING THE ENERGY
EFFICIENCY OF LEARNING-BASED
MPC WITH BRITE

The original aim of building the BRITE platform [27] was
to enable evaluation of existing methods and design new
control schemes that minimize the energy consumption
needed to maintain a comfortable temperature in the
room. In our experiments, linear MPC had inconsistent
performance due to its inability to compensate for the
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impacts of occupancy; it had difficulty with either saving
energy as compared to two-position control [27] or main-
taining temperature close to the desired value. This is
related to a fundamental tradeoff in control systems be-
tween robustness to model uncertainty and performance
due to model accuracy [10].

We implemented a learning-based MPC scheme [10]
with the intuition that this could provide improved perfor-
mance and reduce energy usage. Our experiments on the
BRITE platform suggest that this is indeed the case.
The energy improvements come from two features of the
learning-based MPC. First, it can compensate for fluc-
tuations in weather and occupancy through learning. For
instance, the two-position control of the thermostat over-
cools the room when occupancy is low, and the heat anti-
cipator in the thermostat does not adequately compensate.
Second, it considers the penalty due to electrical con-
sumption by the heat pump transient and tries to optimize
the tradeoff between minimizing switching and AC on
time.

A. Experimental Methodology on BRITE

BRITE is a living laboratory in which we cannot control
weather and occupant behavior, and so we cannot make
direct experimental comparisons between control meth-
ods. One potential solution is to run many experiments,
but this is difficult due to the huge variability in weather
and occupancy. Our approach is to run one control scheme
on BRITE and simulate the others. This allows a compa-
rison under identical weather and occupancy conditions,
though with some error between the simulated and real
energy consumptions because of modeling mismatch. To
mitigate this, we alternate which method is simulated.

The results of two experiments are summarized in
Table 1. The first controlled BRITE with two-position
control, and the second used learning-based MPC on
BRITE; we do not include any experiments with linear
MPC. The energy usages measured by BRITE and esti-
mated by (1) are both provided for these experiments.
These are compared to energy consumption estimates,
using (1), of simulations of other control schemes under
identical weather and occupancy levels. The table lists the
number of times the AC was turned on, the duty cycle of
the AC, the tracking error as measured by the RMS error
between the room temperature and the desired temper-

ature Tq = 22 °C, and the variation in the room temper-
ature as measured by its standard deviation. The external
load corresponds to the average temperature increase over
15 min caused by the weather and occupancy.

B. Two-Position Control Experiment on BRITE

Over a 24-h span beginning and ending on a weekday,
we started running the two-position control of the ther-
mostat on BRITE at 11 p.m. The experimentally measured
temperature is shown in Fig. 5(a). Using our models, we
simulated the corresponding behavior of the learning-
based MPC, which is shown in Fig. 5(b). For our sim-
ulation, we used the stored weather forecasts, true weather
temperature, and occupancy estimated using our model of
two-position thermostat control. The learning-based MPC
used an estimated 28% less energy than the two-position
control. The PWM control actions corresponding to two-
position control and learning-based MPC are shown in
Fig. 5(c) and (d), respectively. Moreover, Fig. 5(e) shows
the change in temperature over 15 min corresponding to
experimentally measured weather and occupancy (i.e.,
kawln] + ).

C. Learning-Based MPC Experiment on BRITE

We ran the learning-based MPC control on the BRITE
platform over a time range that covered two weekdays, and
started at roughly 1 p.M. The experimentally measured
temperature is shown in Fig. 6(a). Using our models, we
simulated the corresponding behavior of the two-position
control, which is shown in Fig. 6(b). For our simulation,
we used the true weather temperature and occupancy
estimated using our model of the learning-based MPC. Our
learning-based MPC approach on BRITE is estimated to
reduce the energy consumption by 66%, when compared
to the existing two-position control scheme. The control
actions corresponding to the two-position and learning-
based MPC are shown in Fig. 6(c) and (d), respectively.
The measured weather and occupancy for this experiment
kyw[n] + g[n] is given in Fig. 6(e).

D. Discussion of Results

Both comparisons show that significant energy is saved
by the learning-based MPC scheme. It is useful to discuss
what features of our implementation and scheme con-
tribute to this, because many of these principles may

Table 1 summary of Experimental and Simulated Energy Comparisons on BRITE
Energy Tracking | Temperature Average
Method | Switches | On Duration | Measured | Estimated | Error Variation | External Load
Two-Position || Learning-Based MPC| 94 6.0 hours 23.6kWh | 0.75°C | 0.13°C 11.0°C
Control Experiment Linear MPC| 96 7.9 hours 30.5kWh | 0.62°C | 0.30°C 11.0°C
Two-Position | 71 9.2 hours |[32.6kWh | 35.1kWh | 0.61°C | 0.20°C 11.0°C
Learning-Based || Learning-Based MPC| 81 3.3 hours [11.8kWh | 13.3kWh | 0.86°C | 0.17°C 8.7°C
MPC Experiment Linear MPC| 70 2.0 hours 8.6kWh | 0.93°C | 0.21°C 8.7°0
Two-Position 38 9.2 hours 34.5kWh | 0.55°C | 0.19°C 8.7°C
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Fig. 5. The AC was controlled by the two-position control of the thermostat, and the corresponding measured room temperature is shown in
units of degrees Celsius. A simulation of the learning-based MPC is given in degrees Celsius. The two-position control uses 32.6 kWh
(estimated 35.1 kWh) of electrical energy, and the learning-based MPC is estimated to use 23.6 kWh. The PWM control generated by the
two-position and learning-based MPC control are also shown. An AC state of O corresponds to the AC off, and AC state of 1 corresponds to
the AC on. The external heating load over 15 min due to weather and occupancy k,wn] + q(n] is given in degrees Celsius. (a) Experimental
two-position temperature. (b) Simulated learning-based MPC temperature. (c) Experimental two-position PWM. (d) Simulated learning-based

MPC PWM. (e) External heating load.

generalize to other HVAC systems. Broadly speaking, the
improvements come about through the use of modeling
and statistical techniques.

Identifying a discrete time version of a mathematical
model taken from physics (3) helps to improve efficiency.
There are complex dynamics in the heat pump, and the
evaporator continues to briefly cool air after the heat pump
is turned off [14]. The discrete time form of the model (3)
accounts for this behavior by considering the AC behavior
over a 15-min span of time, rather than its instantaneous
behavior.

Furthermore, identifying the parameters of the model
allows us to be able to estimate occupancy through only
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temperature measurements, as in (12). These occupancy
estimates are important because this feature of the system
adds considerable variation in the temperature dynamics
of the room. Whereas two-position control overcools the
room when there is lower occupancy, learning-based MPC
detects lower levels of occupancy and reduces the amount
of cooling.

Last, the electrical energy characteristics of the heat
pump are important to conserving energy. The transients
of the heat pump effectively add a penalty, in terms of
energy used, for switching too frequently. The learning-
based MPC can make a tradeoff between how long the heat
pump is turned on for and how often it switches, and it can
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Fig. 6. The AC was controlled by the learning-based MPC, and the corresponding measured room temperature is shown in units of degrees Celsius.
A simulation of the two-position control is given in degrees Celsius. The learning-based MPC uses 11.8 kWh (estimated 13.3 kwWh) of electrical
energy, and the two-position control is estimated to use 34.5 kWh. The PWM control generated by the learning-based MPC and the
two-position control are also shown. An AC state of O corresponds to the AC off, and AC state of 1 corresponds to the AC on. The change in
temperature over 15 min corresponding to experimentally measured weather and occupancy k,w(n| + q[n) is provided in degrees Celsius.

(a) Experimental learning-based MPC temperature. (b) Simulated two-position temperature. (c) Experimental learning-based MPC PWM.

(d) simulated two-position PWM. (e) External heating load.

dynamically adjust this tradeoff based on the estimated
occupancy.

This tradeoff is actually very interesting, because it
leads to counter-intuitive behaviors with the learning-
based MPC. Examining the temperature of the learning-
based MPC [i.e., Figs. 6(a) and 5(b)] shows that the
bands within which the temperature is maintained
actually vary over time. Generally speaking, when the
outside temperature or occupancy is high, the learning-
based MPC actually tightens the temperature bands.
When the outside is cold or occupancy is low, the
learning-based MPC widens the temperature bands.

These behaviors can be explained by thinking of the
electrical behavior of the heat pump. When the
temperature or occupancy is high, the AC needs to be
turned on for a greater fraction of time. The steady state
energy consumption is much higher than the transient
energy consumption, and so the learning-based MPC
does not penalize as much for frequently switching. In
fact, it increases switching to prevent overcooling the
room. In the opposite situation, the AC needs to do less
total cooling. Here, the steady state energy consumption
is smaller and so transient energy due to switching
becomes important. The learning-based MPC reduces
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switching in these cases and allows for larger tempera-
ture variations.

VII. CONCLUSION

We have presented our BRITE platform, studied the tran-
sient and steady stage electrical characteristics of the heat
pump in BRITE, identified a dynamical model of the sys-
tem, explained the impact of occupants on the dynamics,
and implemented a learning-based MPC scheme that esti-
mates occupancy using only temperature measurements.
Experiments show that learning-based MPC saves an
estimated 30%-70% of energy compared to two-position
control. More sophisticated estimates of occupancy will
likely yield further reductions.

One future direction is evaluating how the energy
savings depend upon the outside temperature and occu-
pancy levels; the lower 28% savings occurred on a warmer

day than the savings of 66%. It is not known how much of
this is due to differences in weather versus simulation
modeling errors. We are gathering more data to further
evaluate these issues.

Another planned direction is the implementation of
learning-based MPC on a larger testbed. We have studied a
single-stage heat pump for a single room or small building;
however, large HVAC systems for many rooms add more
challenges to the problem of saving energy [4]-[8]. Esti-
mating and adjusting for occupancy, as well as the tran-
sient and steady state electrical consumption of the HVAC
equipment, will likely lead to real savings in energy. ®
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