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ABSTRACT

Thermostats have the potential for tremendous impact on
global energy consumption, but unfortunately they are of-
ten not used effectively. In this paper, we present a new
system called ThermoCoach that improves thermostat us-
ability by giving personalized and actionable recommenda-
tions for thermostat use. The system senses human occu-
pancy patterns in a home and emails the household sug-
gested setpoint schedules that can be modified or activated
with the click of a button. We performed a randomized con-
trolled trial by deploying over 600 devices in 40 homes from
12 weeks to compare ThermoCoach with a manually pro-
grammable thermostat and the Nest learning thermostat.
Results indicate that ThermoCoach saves 4.7% more energy
than a manually programmable thermostat and 12.4% more
energy than the Nest learning thermostat while significantly
improving comfort over both approaches.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—Complez-
ity Measures, Performance Measures; H.1.2 [Information
Systems|: User/Machine Systems
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1. INTRODUCTION

Thermostats are a simple technology that have the poten-
tial for tremendous impact on global energy consumption,
but only if used effectively. Residential thermostats control
nearly 10% of all energy consumed in the US [1] — approx-
imately 4x the energy consumed by the entire US aviation
industry. For decades, people have been advised that pro-
grammable thermostats would reduce their home’s heating
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and cooling energy by 10-30% by relaxing the temperature
setpoint when the occupants are away or asleep [4], and
they are now installed in a third of all US homes [3]. Un-
fortunately, programmable thermostats are often not used
correctly [5] and on average actually increase in energy us-
age [8]. As a result, the EPA suspended the Energy Star
certification program for all programmable thermostats, ef-
fective December 31, 2009 [22].

Numerous studies have identified the Achilles’ heel of the
programmable thermostat to be usability [5,15]. As a re-
sult, several “smart” thermostats have emerged that avoid
the need for users to manually program a setback schedule.
For example, reactive thermostats heat or cool the house in
response to motion sensors that detect home occupancy, and
are sold by several companies on the market today, includ-
ing BayWeb and Telconet. More recently, the Nest Learning
Thermostat introduced a learning algorithm to automati-
cally create setback schedules based on the user’s tempera-
ture adjustments. However, studies have found that these
new thermostats have introduced new usability problems
even as they solve old ones [24,25]. To date, no technol-
ogy has been demonstrated to solve the problems with the
programmable thermostat.

In this paper, we present a new approach called Thermo-
Coach that improves thermostat usability by giving person-
alized and actionable recommendations for thermostat use.
The system senses and models human occupancy patterns in
a home and looks for a discrepancy between the occupancy
patterns and the actual heating or cooling energy. Then,
it emails the household three suggestions to configure their
thermostat: a high comfort option, an energy saving option,
and a balanced option. The user can select an option by
clicking a button in the email and the recommended sched-
ule is automatically programmed into the thermostat. Be-
fore selecting an option, the user is able to improve it based
on knowledge about human needs that the system could not
identify, such as the need for a warm house when waking up,
to condition the house even when empty for plants or pets,
or to have low humidity levels when going to sleep. Thus,
ThermoCoach simplifies the act of programming a thermo-
stat by only asking the user to select and/or refine a sched-
ule, rather than to produce one from scratch. In contrast
to existing smart thermostats, however, it leaves the user in
complete control. We hypothesize that ThermoCoach will
lead to better comfort and lower energy usage than state of
the art approaches.

To evaluate, we performed a 12-week field study in which
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we compare ThermoCoach with a manually programmable
thermostat and the Nest learning thermostat that automati-
cally creates a setpoint schedule for the home. We recruited
over 100 people for the study and instrumented 40 homes
with over 190 data collection endpoints, over 250 motion
sensors, over 135 Bluetooth low energy(BLE) transmitter
tags, and 40 Nest thermostats. We performed a randomized
trial to compare the three approaches. The results indicate
that ThermoCoach saves 4.7% more energy than a manu-
ally programmable thermostat and 12.4% more energy than
the Nest learning thermostat while significantly improving
comfort over both approaches.

2. BACKGROUND

When used correctly, programmable thermostats are one
of the most cost effective ways of reducing a home’s en-
ergy consumption: they cost approximately $50 and can
save the average homeowner up to $180 per year [4]. Un-
fortunately, they are not always used correctly [5] and on
average increase in energy usage [8]. There are several im-
portant reasons why programmable thermostats are not as
effective as originally expected. First, studies have shown
that programmable thermostats have poor usability [5, 15].
For example, some people use their thermostat as an on/off
switch for the heater while others think it works like a gas
pedal: the house will warm more quickly if the temperature
setting is raised even higher [17]. This misuse can lead to
inefficiency and overheating. Recently, “smart thermostats”
have been introduced to simplify or eliminate programming
altogether, but these approaches have introduced new us-
ability problems even as they solve old ones [24,25]. Prior
research on making complex interactions intelligible has not
addressed the types of long-lived, slowly evolving interac-
tions that characterize human-thermostat interaction.

Even when thermostats are usable, users either cannot or
do not always create an energy efficient setback schedule. A
household’s periods of occupancy change every day and, es-
pecially when a household contains multiple people with dif-
ferent schedules, people don’t always know the household’s
occupancy patterns [9]. Getting the schedule incorrect has
important consequences because consumers value their com-
fort more than energy savings [14] and the possibility of dis-
comfort has been shown to discourage people from using
setback temperatures [2]. Even if people know an occu-
pancy schedule, their occupancy patterns can change over
time and people do not want to continuously adjust their
thermostats to optimize performance [11]. In any case, even
knowing the occupancy patterns is not enough: studies show
that consumers do not understand how their HVAC system
works [18] nor how the setback schedules affect energy con-
sumption [13]. Thus, many consumers simply do not have
the knowledge or understanding needed to create schedules
with the desired balance between comfort and energy usage.

Several recent technologies have tried to address the is-
sue of user capability by eliminating the need to create a
schedule. For example, reactive thermostats such as Bay-
Web and EcoBee use motion sensors or door sensors to
control the heating and cooling based on occupancy. How-
ever, a recent study found that reactive thermostats save
less energy than programmable thermostats in residential
buildings, and in 4 out of 8 households actually increase
energy usage by up to 10% [12]. This was caused by the
long delay required to determine that a home is actually
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unoccupied, combined with the fact that they must use the
highest capacity, lowest-efficiency heating stage to raise the
temperature quickly when they detects that occupants sud-
denly arrive. Several studies of smart thermostats have
demonstrated that energy savings and/or comfort can be
improved by predicting future occupancy based on the past
and present [10,12,20]. However, none of these systems have
been demonstrated to address the usability issues that have
long plagued thermostat operation in the wild. More re-
cently, The Nest learning thermostat came on the market in
2012 to high acclaim and is now estimated to be installed in
over 1 million homes. The Nest tries to automatically learn
a setback schedule based on when the user sets back the
temperature, but this approach only works if the user actu-
ally uses setbacks. Additionally, recent research found that
the Nest’s autonomous control eventually leads to user dis-
engagement, resulting in inefficient thermostat management
and wasted energy, and that frustrated users disable the
thermostat’s “smart” functionality when it does not perform
in a predictable manner [23,24]. In early work, researchers
created the Self-Programming Thermostat [7] that automat-
ically calculates optimal thermostat schedules but, instead
of activating one of them autonomously, asks the user to
select between a Pareto optimal set of schedules with dif-
ferent comfort/energy tradeoff. The ThermoCoach system
described below is based on this same principle. This paper
presents the first behavioral study of smart thermostat tech-
nology, demonstrating efficacy of the entire system including
the human response to the technology.

3. THERMOCOACH OVERVIEW

ThermoCoach monitors occupancy patterns in the home
using occupancy sensors and recommends setpoint sched-
ules to the user. The recommended schedules are optimal in
the sense that they minimize energy usage for a target com-
fort level. Three schedules are recommended to the users:
high comfort, energy saver, and super energy saver. These
three options are presented along with the household’s cur-
rent schedule. The user can “activate” one of the options
and the schedule automatically gets programmed into their
thermostat. The user can also edit a schedule before acti-
vating.

3.1 Hardware Instrumentation

ThermoCoach can operate with any set of occupancy sen-
sors that can infer the active, asleep, and away states of
the home, including GPS-enabled smartphones, wearable
devices, home security systems, and so on. For this study,
we chose to use Z-Wave Motion Sensors and Bluetooth Low
Energy (BLE) tags. The hardware kit that was installed into
each home included 1 wireless router, up to 4 data collec-
tion endpoints, 1 Nest thermostat, up to 6 motion sensors,
and up to 4 BLE tags. The wireless router was attached to
the home’s existing router to avoid needing to ask partici-
pants for their WiFi encryption passwords. The data collec-
tion endpoints were created from a Raspberry PI model B
running Debian Linux and a software platform called Pilo-
teur that is designed to ensure reliable data collection from
smarthome devices [6]. All hardware was pre-configured to
wirelessly connect to each other and operate hands-free upon
being powered up in the home. Thus, these hardware kits
could easily be installed by a smart home enthusiast. The
kits took about 90 minutes to assemble and 60 minutes to
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Figure 1: The hardware kit that was installed into each home included up to 4 data collection endpoints, up to 4 BLE tags,

up to 6 motion sensors, 1 wireless router, and 1 Nest thermostat.

install.

A 2nd Generation Nest Learning Thermostat was pre-
configured in the lab with a unique identifier and password
before installation in each home. Each participant was given
access to the Nest thermostat’s online interface and mobile
app. Data from each thermostat was continuously logged
approximately once per minute by a Piloteur script using
a public RESTful API offered by Nest’s servers, recording
the current setpoint schedule, the current setpoint, the cur-
rent state of the HVAC equipment, and states of the Nest-
specific features. Because the thermostats could only be
queried through Nest’s servers, data was lost any time a
home’s network connection or a Nest’s wireless connection
was dropped. In some homes, a large amount of the thermo-
stat data was lost because the thermostat had trouble main-
taining WiFi connectivity. Two of the homes in the study
found that their cooling coils become iced over after the
Nest was installed. It was not clear if the Nest thermostat
was responsible for the ice but nonetheless one participant
asked for the thermostat to be removed and dropped out of
the study due to this issue, resulting in only 39 participants
completing the study.

To detect whether occupants were in the home or away
from the home, we deployed wireless tags on the household
members’ keychains or the one item they always carry with
them when they leave their home. Participants were asked
to carry their tags with them when they left the house and
to always store their tags in the same location when home.
A Bluetooth Low Energy (BLE) tag created by StickNFind
was given to every member of the household who might come
and go from the house independently. Children who would
be home only with another family member were not given
tags. The wireless tags were detected by Piloteur endpoints
with an IOGear Bluetooth 4.0 USB adapter to record the
MAC address and signal strength of any tags within the
range of the adapter. The transmitter/receiver pairs typ-
ically had a range of 7-8 meters with line of sight. Ap-
proximately three endpoints were installed in each home to
mitigate data loss due to range limitations. One endpoint
was deployed near each exterior door to detect occupants
when they entered/left their homes, and one endpoint was
installed where the homeowners indicated that they would
keep their keys, e.g. on a kitchen counter, or on a bedroom
night table.

We deployed Schlage S200HC motion sensors that use pas-
sive infrared (PIR) and communicate using the Z-Wave pro-
tocol. These wireless, battery-operated devices have a de-
tection area of approximately 9 x 12 meters with a 120°
detection angle and a detection range of up to 100 feet (30.5
meters) with line-of-sight. Data from the motion sensors
was logged with an Aeon Labs S-2 Z-Stick connected to a
Piloteur endpoint, which was installed in a central location
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in the home to ensure that it was within range of the motion
sensors. Up to 4 motion sensors were installed in rooms of
high activity such as the kitchen or living room and were
placed to face the most active portion of the room, e.g. fac-
ing the range or sink in a kitchen or facing the couch in a
sitting room. At least one sensor was placed in the transition
zone between the active rooms and the bedrooms, such as
a hallway or doorway to the bedrooms, to ensure detection
of participants as they went to sleep. To avoid false activity
detection at night, motion sensors were not installed inside
bedrooms facing the bed because preliminary testing found
that people do move substantially while sleeping.

3.2 Inferring Daily Occupancy Patterns

ThermoCoach uses occupancy sensors to determine one
of three possible states of the home: active, asleep or
away. The home is in an active state when at least one
occupant is present in the home and not sleeping. The
home is in the away state when all occupants have left the
house and it is in the asleep state when all occupants of the
home have turned into their bedrooms for the night. Based
on long-term observations of the home state, ThermoCoach
learns the home’s daily occupancy pattern: the fraction of
days that the home is in a given state at a given time of
day. These values are stored in the variables away;, asleep;,
and active;. In this study, we represent occupancy patterns
with 15-minute granularity because the Nest thermostat al-
lows setpoint scheduling at the same granularity, so 7 falls
in the range [1,96]. Other implementations could extend
the model to have finer resolution, to differentiate weekdays
and weekends, or to infer different patterns for all 7 days of
the week. These values can be derived from any occupancy
sensors and, in the subsections below, we explain how we
derive them from the BLE tags and the motion sensors that
were installed for this study.

3.2.1 Inferring Away Patterns

We discarded all BLE data from any day in which the
household was observed to be home for less than 10 hours,
assuming it was caused by lost data or an anomalous overnight
trip. The remaining days are defined to be the set ValidDays.
We also discarded any BLE tags that were continuously de-
tected in the home, assuming they were left in the home in
error. This conservative approach to data cleaning results
in fewer days of useful data but avoids having anomalous or
erroneous data affect the schedule recommendations. For all
remaining BLE data over all days j € ValidDays, we de-
fined the variable BLFE;; to be 1 if any tag was detected in
the ¢th 15-minute interval on day j, and 0 otherwise. Then,
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Figure 2: Daily occupancy patterns for one home show that
the household typically woke up at 6am, left at 8am, re-
turned at 5pm, and slept before midnight.

we define

ZjEValidDays BLEU (1)
|ValidDays|

In other words, away; is the fraction of valid days in which
at least one occupant was in the home during interval .

away;

3.2.2 Inferring Asleep and Active Patterns

In this study, we use motion sensors to differentiate be-
tween the asleep state and the active state. Similar to the
BLE data, we defined the variable Motion;; to be 1 if any
motion was detected in the ith 15-minute interval on day
j, and 0 otherwise. However, motion sensors do not al-
ways detect people due to limited coverage or people sit-
ting still. Therefore, we could not make assumptions about
awake or asleep states based on the lack of motion sensor
data. Instead, we identify a daily sleep event sleep;; to be
1 if Motion;; was the last motion detected before night j
and 0 otherwise. Similarly, a daily wake event wake;; is 1 if
Motion;; is the first motion detected after night j and 0 oth-
erwise. The night is defined to be at 4am, so all sleep events
occur before 4am and all wake events occur after 4am. A
sensor was deployed in the transition area to the bedrooms
in order to increase the chance of detecting people at least
once as they enter or leave the bedroom the first and last
time each night. Sleep and wake events were only identified
if the home was occupied.

Detecting sleep was particularly challenging in homes with
pets, which often sleep in the active rooms and could trigger
motion sensors during the home’s asleep state, which could
result in unusually late sleep times or unusually early wake
times. Homes with pets were identified before the study be-
gan and any nights with sleep or wake events within three
hours of each other were attributed to pet motion and were
discarded. Additionally, motion sensor sometimes failed to
detect people or lost data due to communication or hard-
ware failures, which could incorrectly result in earlier sleep
times or later wake times. We therefore eliminated any sleep
events before 9pm and any wake events after 1pm. As a re-
sult, some nights only had a sleep event detected while other
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nights only had a wake event detected. These conservative
data cleaning procedures are designed to eliminate any du-
bious events to avoid impacting the schedule recommenda-
tions, even if that means that the recommendations must be
generated based on a much smaller data set. For all remain-
ing sleep events m € Sleep and wake events n € Wake, we
define

> k< Sleepk; B > k< waker;
v sleps | 2oy, waker,

where k < ¢ is used to denote that time k is earlier than
time ¢ with respect to a day that starts and ends at 4am
rather than 12am. In other words, 11pm < lam is a correct
statement while 3am < 5am is not a correct statement. To
summarize, wakeSleep Ratio; indicates the ratio of days that
the household is asleep rather than awake at time ¢, given
that the household is occupied at time 4. It is calculated to
be the fraction of times the household was detected going to
sleep before time ¢ minus the fraction of times the household
was detected waking up before time 7. Using this value, we
define the fraction of all days that the household is awake or
asleep by subtracting out the fraction of days in which the
household is away at time i:

wakeSleepRatio;

(1 — away;) * wakeSleepRatio; (2)
(1 — away;) * (1 — wakeSleepRatio;) (3)

asleep;

active;

Figure 2 shows a daily occupancy pattern that is learned
from one household. The dark blue region depicts the per-
centage of days the household is asleep during each 15 minute
interval. The lighter red region depicts the percentage of
days the household is away. In this home, the household
typically woke up around 6am, left the house around 8am,
returned home around 5pm, and went to sleep shortly before
midnight.

3.3 Setpoint Schedule Analysis

A setpoint schedule is defined by a set of times t; € t
at which the home’s target temperature is changed to a set-
point value T; € T. The setpoint temperatures will typically
be one of three canonical values: Tactive; Taway, O Tasicep,
which represent the nominal desired temperatures when the
home is active, away, and asleep, respectively. From these
parameters, one can derive the sequence of target tempera-
tures setpoint;(t, T) for the schedule at every time . Any
setpoint schedule can be evaluated in terms of both energy
savings and comfort as described below.

The expected energy savings of a schedule can be approx-
imated as

E(t,T) =1-0.06 Z(setpointi(t, T)—min;(setpoint;(t, T)))
This formula is derived from the rule of thumb that approx-
imately 1% of energy can be saved for each 1°F setback over
an 8-hour period [16]. This formula lets 1 be the normalized
amount of energy to condition a home to its minimum tem-
perature all the time. For any setback temperature above
the minimum (or below it, in the case of heating), it esti-
mates the energy that would be saved to be proportional to
the number of degrees of setback. More accurate estimates
can be achieved with more sophisticated equipment models,
but even these predictions would be estimates due to unpre-
dictable weather patterns and user overrides. The current
approach is an approximation that may cause ThermoCoach
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Figure 3: ThermoCoach emailed 4 options to each user:
their current schedule, and high comfort schedule, an energy
saver schedule, and a super energy saver schedule. Users
could Activate a schedule by clicking a button and it would
automatically be programmed into their thermostat.

to recommend a suboptimal schedule and so better energy
predictions would only improve the energy savings produced
by ThermoCoach. This is a topic for future work.

The expected effect of a schedule on comfort can be de-
fined as

C(t,T) Z[(setpointi(t, T) — Tactive) * active;
i

+maz(0, setpoint;(t, T) — Tasicep) * asleep;
+maz(0, setpoint; (t, T) — Taway) * away;]

In other words, for every time period i, this equation pe-
nalizes the schedule when temperatures are too high for a
given state, in proportion to the fraction of days the home is
expected to be in that state at time i. No comfort penalty
is assessed for setpoints that are too low for a given state.
The comfort penalty C is measured in units of miss time de-
grees: the number of degrees of error in the target tempera-
ture times the number of minutes of error. This formulation
is for the cooling season where setbacks are a higher tem-
perature than the comfort temperature. During the heating
season, it would penalize when setbacks are temperatures
are too low for a given state.

3.4 Schedule Recommendations

ThermoCoach generates recommended setpoint schedules
for each household based on the occupancy patterns inferred
from the sensors. There is no perfect setpoint schedule for
any home, however, because the occupancy patterns are not
exactly the same every day. A home may be occupied one
day at a given time and unoccupied the next day at the same
time, but a setpoint schedule must condition the home to the
same temperature at that time on all days. Thus, there is
a fundamental tradeoff between energy usage and comfort:
more energy efficient schedules produce lower comfort levels
on average, and vice versa. For this reason, ThermoCoach
does not recommend only a single schedule, it recommends
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Figure 4: If users click the Edit button in the ThermoCoach
email, they are brought to a Web page that allows them to
edit the schedule. While editing, users are informed by a
graph of the times when their home is typically active (the
gray shaded region right below the schedule).

several schedules that offer a different balance between com-
fort and energy.

In our current implementation, ThermoCoach creates a
weekday /weekend schedule. A weekday schedule is defined
by four times [twake, ticave, tarrive, tsicep] € t to model the
times that a household first wakes up in the morning, leaves
the house, returns to the house, and goes to sleep at night.
These times correspond to four temperatures: [Twake, Ticave,
Tarrive, Tsicep] € T. The weekend schedule has only two
events: [twake, tsleep} € t. ThermoCoach creates a value
for Twake and Tyrrive by searching the home’s thermostat
logs for the nominal temperature when the home is in the
active state. It defines a maximum setback of 8°F, and sets
Ticave = Twake + setback and Tsieep = Twake + 0.5setback.
In other words, a full setback is used when the household is
away and a half setback is used when it is asleep. This 4-
state weekday/weekend model of occupancy does not match
every household and models that capture more occupancy
states could have greater energy saving potential. The Nest
thermostat supported schedules with up to 96 states per day.
However, we opted to use the conventional 4-state model so
that the recommendations would be easy for participants to
understand.

Given this definition of a schedule, ThermoCoach can
solve the following minimization problem for any comfort
ratio R:

minitmize E(t,T)
subject to C(t,T) < R=x Z active; * setback

(3

twake SI tleave ﬂ tarri'ue ﬁ tsleep

In other words, ThermoCoach chooses the schedule times
such that energy usage is minimized and the comfort penalty
is bounded by R times the penalty of having a full setback
for the entire expected active time per day. This optimiza-
tion problem is solved by a brute force solver that compares
all possible assignments of t and completes in less than 10
seconds.
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ThermoCoach uses this minimization to define three sched-
ules that are recommended to the user: 1) a High Com-
fort schedule with R=0.1, 2) an Energy Saver schedule with
R=0.2, and 3) a Super Energy Saver schedule with R=0.3.
These recommendations are emailed to the homeowners along
with the schedule that is currently programmed into their
thermostat and the household is asked to choose one of the
four options. Each recommendation is annotated with its
expected effect on energy savings and comfort levels. Fig-
ure 3 shows a sample email generated. Users can Activate
a recommendation by clicking a link in the email and their
thermostat is automatically programmed with that schedule.
Otherwise, the users can choose to Edit a recommendation,
at which point they are redirected to the ThermoCoach Web
interface, shown in Figure 4. The Web interface displays
the schedule together with a graph of the times when the
home is in the active state (in gray below the schedule), as
calculated from Equation 3. Informed by this graph, users
can edit the setpoints by dragging them with a mouse to
accommodate lifestyle, such as the need for a warm house
when waking up, or a cool house when sleeping. Users can
also switch between the 4 options. The user can accept and
save a schedule from the Web interface and, similar to the
email, the accepted schedule is automatically programmed
into their schedule.

4. EVALUATION

We conducted a 12 week study in 39 homes to evaluate the
energy saving potential of ThermoCoach, and to compare
with both manually programmable thermostats and the Nest
learning thermostat. The design and results of the study are
described in the subsections below.

4.1 Recruiting and Deployment

To recruit participants, we distributed over 27,000 flyers
through local newspapers and by manually placing doorhangs
on doorknobs. The flyers invited people to participate in a
study of energy saving technology but did not explain what
technology was to be tested. To incentivize participation,
the flyers indicated that a Nest learning thermostat would
be installed in the home at no cost to the participants. Thus,
the participant pool will likely have some bias towards peo-
ple who are interested in energy or environment and pos-
sibly in technology or gadgets. People with interest in the
study were instructed to volunteer by completing an online
survey about their home and household. We screened for
home owners with a detached home and 2 or more mem-
bers of the household. Renters were not accepted due to the
need for permission to install hardware in the home. Par-
ticipants were asked whether their household included pets
or children, the type of cooling equipment (single stage or
multi-stage), and how many hours the house was typically
unoccupied per day. However, we did not screen for these
factors. 135 people volunteered for the study. After screen-
ing and drop outs, 40 households were enrolled in the study.
During enrollment, all participants were informed through
consent forms that the study may involve receive recommen-
dations for energy savings, but they were not informed that
the recommendations could involve setpoint schedules. 1
household withdrew from the study due to ice on the cool-
ing coils after the Nest thermostat was installed and the
other 39 households completed the study. All homes were
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located within 30 miles of each other and were subject to
similar weather conditions throughout the study.

As the participants were being enrolled, we deployed over
190 data collection endpoints, over 250 motion sensors, over
135 Bluetooth low energy (BLE) transmitter tags, and 40
Nest thermostats in 40 homes. Every home had a unique
layout and pattern of use and so, to ensure that all homes
were instrumented in an unbiased and consistent fashion,
we hired a third-party installation professional who was fa-
miliar with neither the study design nor the ThermoCoach
system. The installer was given generic guidelines about how
to install the sensors and did not receive any unique instruc-
tions for a specific home. The installer deployed a generic
hardware kit into each home, verified hardware operation
on-site using a smartphone, recorded the home’s floor plan
and the locations of the hardware deployment, and returned
the deployment notes along with any unused hardware to
the researchers.

4.2 Study Design

Before the study began, the 39 participating households
were randomly divided into three groups: Group 1 would
use manually programmable thermostats, Group 2 would
use the Nest learning thermostat, and Group 3 would use
ThermoCoach. Group 3 is the treatment group that will
receive the experimental treatment: ThermoCoach recom-
mendations. Groups 1 and 2 are the control groups against
which the energy usage and comfort levels of Group 3 will
be compared. All homes had the same hardware installed to
avoid any bias caused by the presence of instrumentation,
even though the occupancy data would only be used to make
recommendations for households in Group 3.

To ensure that the same hardware HVAC control algo-
rithms, and user interfaces were used in all the homes, a
Nest thermostat was installed in all 39 homes. However,
two features of the Nest were disabled for Groups 1 and 3
to emulate a more conventionally manually programmable
thermostat: 1) the Auto-Schedule feature that automatically
learns a setpoint schedule, and 2) the Auto-away feature that
automatically activates a setback temperature when its oc-
cupancy does not detect human activity. The thermostats
were configured at the time of install, participants were sent
email instructions explaining which Nest features could be
enabled, and the thermostats were monitored for any config-
uration changes. All other features of the Nest, including en-
ergy feedback emails, usage history, and the Web and mobile
interfaces, were enabled for all participants. Table 1 sum-
marizes the difference between each group. When the Nest
was initially installed, the thermostat was not programmed
with a setpoint schedule.

Data about baseline energy usage was collected on all par-
ticipating households for 6 weeks, at which point we per-
formed an intervention event. We sent an email to all 39
households with Nest’s monthly energy report, which gives
feedback about energy usage, comparison with other house-
holds, and occasionally energy saving tips. Additionally,
households in Group 3 were emailed ThermoCoach schedule
recommendations and were asked to respond to the recom-
mendations within 48 hours. Once the participants selected
an option, their thermostats were programmed with chosen
schedule within 1 day.

Participants were reminded via email to carry their key
fob sensors with them whenever they left home, both after
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Group 2

Eco-Feedback
Auto-Schedule -

Auto-Away -
ThermoCoach -

N OSON

Table 1: The 39 homes that completed the study were di-
vided evenly in three groups for a randomized controlled
trial. All groups received eco-feedback emails. Group 1
could only manually program their thermostat. Group 2
used Nest’s learning algorithms. Group 3 received Thermo-
Coach suggestions.

the study started and again after the intervention. Other-
wise, participants were told to interact naturally with their
thermostat. Two weeks after all homes were instrumented,
entry interviews were conducted with all 39 households to
understand people’s interaction with their thermostat, en-
ergy needs, and weekly schedules. Another interview was
performed after the intervention event to understand how
and why thermostat usage may have changed. Finally, a
third and final exit interview was performed after the study
was complete. Due to space limitations, the findings from
these interviews are out of scope for this paper.

4.3 Recommendations and Adoption Rates

Figure 5 illustrates the energy usage and comfort levels of
the 4 recommended schedules for each of the 13 homes in
Group 3, along with the schedule chosen after intervention.
The x-axis is the cost of a schedule relative to having a sin-
gle setpoint all day long; lower values indicate lower energy
usage. The y-axis indicates the average number of minutes
a schedule would undercondition the home per day; higher
values indicate lower comfort. The ThermoCoach recom-
mended schedules are shown as a star, pentagon, and dia-
mond, respectively. The home’s pre-intervention schedule is
shown as a red circle and the post-intervention schedule is
shown as a yellow circle.

12 of the 13 households in Group 3 responded to the email
within forty-eight hours. Of these, 8 households activated
a schedule other than their pre-intervention schedule. All 8
of these households significantly improved both the comfort
and energy profile of their schedule. Of these 8 homes, 3
choose the High Comfort recommendation or a variation of
it; 3 chose the Energy Saver recommendation or a variation
of it, and 2 chose the Super Energy Saver recommendation.
Four of these households activated recommended schedules
as is, two adjusted the setpoint times of a recommended
schedule by one hour before activating it, and two reduced
the setback temperature from 8°F to 2°F before activating
it. Two of these 8 homes had already created setpoint sched-
ules before intervention but they activated ThermoCoach
recommendations that were more energy efficient. The other
six homes that activated recommendations did not have any
schedule prior to the intervention.

Of the 5 homes that kept their pre-intervention schedules,
2 simply did not select any option in response to the email.
The other 3 all had manually created their pre-intervention
schedule. These homes all cooled to a lower temperature
at night than during the day, presumably because the bed-
rooms upstairs were more difficult to cool, making it difficult
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Figure 5: This graph shows the 4 ThermoCoach options for
each home, connected by a line. The position of each option
indicates its energy usage E(t,T) on the x-axis (lower is
better) and comfort level on the y-axis (lower is better).
The schedule that was selected by each home is shown as a
yellow dot near the line. 8 of the 13 ThermoCoach homes

saved energy by activating a recommended schedule.

to sleep. ThermoCoach was not designed for this thermal
zoning problem and therefore the recommendations were not
workable for these families. This is an opportunity for im-
provement of ThermoCoach in the future.

5. IMPACT ANALYSIS

To estimate the impact of ThermoCoach on energy usage
and comfort, we used a statistical difference of differences
analysis, also called a panel regression. A panel analysis uses
a control group to factor out the effect of uncontrolled factors
such as weather. It also compares baseline performance of
the control and treatment group to factor out unobservable
time-invariant factors, such as a difference in the average
furnace efficiency between groups. To perform the panel
analysis, we modeled the outcome variable cost for any given
home i on any given day t as a function of Treatment; and
Post, which have the value of 1 if home 7 is in the treatment
group (Group 3) and if day ¢ is in the treatment period (post-
intervention), respectively. Both variables have the value 0
otherwise. We used a linear model defined in the Guidelines
on Measurement and Verification of Behavior-based Energy-
efficiency Programs [21]:

In(costit) = ap + a1 * Treatment; + o * Posty
+ as * Treatment;xPosty + 1 * CDDy
+ B2 * CDDixTreatment; + B3 * CDDyxPost,

+ B4 * CDDixTreatment;xPosty + v; + u;

(4)
where In(cost;) is the natural log of the outcome variable
in home ¢ on day ¢ and CDD; (Cooling Degree Days) is the
amount of time the outdoor temperature was above 70°F on
day t and v; is a time invariant fixed effect term and wu; is
an independent random error term. The values for CDD for
the study period were generated by BizEE Software using
data from Weather Underground.



Treatment | Control ATC

Groupl Group 2 | +7.79%
Group?2 Group 3 | -12.39%
Groupl Group 3 | -4.686%

Table 2: The table shows the impact (ATC) of the inter-
vention on the energy usage value E(t,T) (Equation 3.3)
for each group compared to a control group. ThermoCoach
reduces energy by 4.7% and 12.4% compared to manual pro-
gramming and Nest learning, respectively.

We use the model above to estimate the Average Treat-
ment Impact (ATC): the average impact of the treatment on
the outcome variable cost. To do this, we define a control
group (either Group 1 or 2) and a treatment group (Group 3).
We create an equation based on the model for every home
in both groups on every day of the study, forming a system
of equations that can be solved for the a and B coefficients.
These coefficients estimate the impact of each term in the
model on the outcome variable. The ATC is defined to the
sum of all coefficients for the term Treatment;xPost::

ATC = ds + 1+ CDD, (5)

This value represents the amount that In(cost;;) changed
on average after the intervention group for homes in the
treatment group. Since small changes in the natural log
approximate percentage changes in the original value, the
ATC indicates the average percentage change of the outcome
variable that is caused by the treatment.

The confidence intervals are then calculated as:

ATC = ATC + c = standardError(ij“\C) (6)

where c is the 1 —« percentile of the Degrees of Freedom dis-
tribution with 7 independent variables in the model and 1678
data samples. If the confidence interval is strictly above or
below 0, we conclude that the ATC is statistically significant
for this « value.

Due to the extreme cost of having an electrician to install
sub-metering equipment in all 40 homes, we approximate
energy impact based on both the real-time temperature set-
tings and the amount of time that the HVAC equipment
was powered on, as described below. The energy impact
indicated by both metrics are consistent with each other.

5.1 Energy Impact: Part I

To analyze energy impact, the setpoint temperatures at
all times (including manual overrides) were extracted from
the thermostat operational logs and were used to calculate
the value E(t, T) (Equation 3.3) for each home on each day.
This value measures the depth and frequency of setback tem-
peratures, which has been considered a good predictor of av-
erage energy usage in the past [16]. We performed panel re-
gression analysis with E(t, T) as the outcome variable using
three different control/treatment pairings to achieve pair-
wise comparisons between Groups 1, 2 and 3. The results
are summarized in Table2 and indicate that ThermoCoach
reduced energy usage by 4.7% in comparison to manually
programmable thermostats and 12.4% in comparison to the
Nest programmable thermostat. These differences are sta-
tistically significant with o = 0.01. This data supports the
hypothesis that ThermoCoach recommendations save more
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Figure 6: Darker colors indicate higher values of the en-
ergy usage E(t,T) (Equation 3.3) for a given home on a
given day. The homes are sorted based on their group. The
intervention day is shown as a black vertical line and the
times that ThermoCoach recommendations were activated
are shown as red lines. The graph indicates that 2 homes
using manual programming saved energy, 1 home using Nest
learning increased energy usage, and 7 homes using Thermo-
Coach saved energy after the intervention.

energy than either energy feedback alone or autonomous
control.

Figure 6 illustrates the average values of E(t,T) for each
home throughout the study period, where each cell [r, ] in-
dicates the average value for household r on day c. Darker
shades indicate higher energy usage and blank squares indi-
cate data loss. The households are sorted along the y-axis
as Groups 1, 2, and 3. The intervention day is illustrated
as a black vertical line. For each home in Group 3, the
day on which a recommendation was activated is indicated
as a short, red vertical bar. A weekday-weekend pattern
and increase in energy usage on weekends is evident in the
data. The figure illustrates that ThermoCoach recommen-
dations reduced energy costs significantly for seven out of
eight homes that chose recommended schedules at time of
intervention. One home chose a schedule that was very simi-
lar to their pre-intervention schedule and therefore exhibited
little change. Energy savings is also apparent for two homes
in Group 1. No change in any individual household is ap-
parent in Group 2 for the duration of the study, except in
one home that begins to use more energy immediately after
receiving the energy feedback email.

5.2 Energy Impact: Part II

In addition to analyzing setback temperatures in Section 5.1,
we also analyze energy in terms of on-time: the number of
minutes per day the day the air-conditioning unit was ac-
tively cooling the home. Both setback temperatures and
on-time are directly related to energy usage, but on-time is
more affected by short-term weather patterns than setback
temperatures. Thus, we expect setback temperatures to be
a better indicator of long-term energy consumption. The on-
time for each home was extracted from the thermostat logs
and used as the outcome variable in a pairwise panel analysis
with Groups 1, 2, and 3. The ATC values are summarized
in Table 4 and are statistically significant with o = 0.05.
The results indicate that the ThermoCoach intervention de-
creased the average on-time by 6.2% in comparison to the
manual thermostat and by 4.6% in comparison to the Nest
thermostat. These results are consistent with the analysis
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Figure 7: Darker colors indicate higher on-time for a given
home on a given day. The data mirrors that for E(t,T) in
Figure 6 while reflecting the effect of daily weather patterns.

in Section 5.1 and supports the hypothesis that Thermo-
Coach’s recommended schedules reduce energy usage more
than the other two approaches. Figure 7 shows the on-time
for each home throughout the study. The per-home trends
in this figure mirror those in Figure 6, and also reflect the
effects of local weather patterns residential air conditioning
demand.

5.3 Comfort Impact

We measure the human response to our schedule recom-
mendations in terms of manual temperature overrides; com-
fortable schedules will have fewer manual overrides. Specifi-
cally, we use average degrees changed as a metric of schedule
comfort: the average number of degrees by which the target
temperature in a home differs from the scheduled tempera-
ture. This metric does not put a heavy weight on small tem-
perature tweaks of 1-2 degrees and instead focuses on deep
setbacks that occur even when the occupants are active in
the home. We performed pairwise comparison of the average
degrees changed in Groups 1, 2, and 3, and the results are
presented in Table 3. The results show that the interven-
tion reduced the average temperature change for Group 3 by
over 45% compared to manually programmable thermostats
or learning thermostats, indicating that people had less need
to modify ThermoCoach’s recommended schedules than the
schedules they manually generated or that were generated
by the Nest thermostat. The ATC values are all statistically
significant with alpha = 0.05.

Figure 8 shows the average degree change per day when
compared to the day’s setpoint schedule. This data corrob-
orates that very little change occurred in Groups 1 and 2,
although one home in Group 2 did significantly reduce the
manual overrides after intervention. This home use far less
energy than most other homes pre-intervention and suddenly
increased energy usage after the energy feedback email. This
could be caused by the deconstructive power of an energy
feedback email that tells a person they are performing above
average [19]. The data also shows that several homes in
Group 3 did increase the number of overrides after inter-
vention, even though the average temperature change was
reduced. This is likely to be caused by the setpoint schedule
calling for a setback when the households are active. This
affect may be counter balanced by the same deconstructive
power of social norms that affected one house in Group 2,
producing a decrease on average.
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Treatment | Control ATC

Groupl Group 2 | -3.29%
Group2 Group 3 | -45.67%
Groupl Group 3 | -47.43%

Table 3: This table lists the impact (ATC) of the interven-
tion on the size of manual overrides. Homes using Thermo-
Coach reduced manual overrides by over 45% compared to
the other two groups after intervention.

Treatment | Control | ATC
Groupl Group 2 | -1.5%
Group2 Group 3 | -4.63%
Groupl Group 3 | -6.15%

Table 4: This table lists the impact (ATC) of the inter-
vention on on-time: the number of minutes that the air
conditioning was on each day. ThermoCoach reduced ADC
by over 4.6% compared to manual programming, and 6.2%
compared to Nest learning.

6. LIMITATIONS OF THE STUDY

The conclusions of this study are limited by several fac-
tors. First and perhaps most importantly, we could not di-
rectly measure energy usage in the homes due to hardware
costs, installation costs, and data collection challenges. In
current work, we are exploring ways to combine the thermo-
stat operation logs with sophisticated equipment models to
better analyze energy usage. Second, this pilot study lasted
for only one season over a period of three months, and in
only one climate zone. A longer and larger study would
help understand the seasonal weather effects and long-term
human responses, including the possibility that energy sav-
ings decline because users revert to their old schedules or
that they increase because repeated recommendations over
time actually improve adoption rates of the schedule rec-
ommendations. Finally, participants may have been more
likely to accept ThermoCoach recommendations due to the
Hawthorne Effect, i.e. that they knew they were part of a
study and may even have felt obliged to select an energy
saving option. This effect would also be seen in the control
groups.

At the beginning of the study, some Nest thermostats had
degenerate schedules with only a single setpoint per day and
our first participant survey revealed that some participants
did not change the thermostat temperature because they
thought that the settings were provided by researchers as
part of the study, which was not the case. All participants
were sent an email reminding them of what they could and
could not do during the study. At time of intervention, the
system that processed the recommendation selections mal-
functioned and the selections were manually verified from
participants of Group 3 over the phone. Eleven out of thir-
teen participants said they had already made their selection
before the phone conversation and so it is unlikely that the
adoption rate was biased by the phone call.

Our panel regressions compare pre- and post-intervention
outcomes but the Nest thermostats in Group 2 were involved
in a continuous learning process that does not necessarily
coincide with the date of the intervention event. We aug-
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Figure 8: Darker colors indicate large manual overrides for
a given home on a given day. Manual overrides changed
very little in homes using manual programming, decreased
in one home using Nest learning, and had mixed results in
homes using ThermoCoach, with the average decreasing sig-
nificantly.

mented our analysis by performing another regression anal-
ysis using only the first 2 weeks and the last 2 weeks of
the study, based on the observation that the Nest did not
change the schedules before the first 2 weeks or after the
last 2 weeks. The new analysis verified that the learning
time did not change the impact results or the statistical
significance of the results. This is probably because Nest’s
Auto-schedule did not make major changes to the setpoint
schedules in Group 2 at any point in the study, with setbacks
of even 3-4°F or more being quite rare. Therefore, the time
period used for learning did not affect the impact analysis.

7. CONCLUSIONS

In this paper, we deploy over 600 devices in 40 homes
for a 3-month period to perform a randomized controlled
trial to compare the ThermoCoach recommendation system
with both manually programmable thermostats and the Nest
Learning Thermostat. Our results indicate that Thermo-
Coach saves more energy and produces higher comfort than
the other two systems. To our knowledge, this is the first
smart thermostat technology that has been demonstrated to
be effective while testing the both the technology and the hu-
man response to it. ThermoCoach’s energy savings of 5-12%
over existing technologies are statistically significant and are
a first step towards addressing the usability problems that
have plagued programmable thermostats. By addressing the
limitations of our current implementation, such as address-
ing homes with two-story zoning issues, we are optimistic
that future work can increase the energy savings enabled by
the ThermoCoach approach.
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