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ARTICLE INFO ABSTRACT

Occupancy detection capabilities provided by modern connected thermostats enable adaptive thermal control of
residential buildings. While this adaptation might simply consider the current occupancy state, a more proactive
optimized system could also consider the probability of future occupancy in order to balance comfort and energy
savings. Because such proactive control relies on accurate occupancy prediction, we comparatively evaluate a
number of machine learning models for predicting measurements of the future occupancy state of homes that is
critically enabled by thermostat data from real households in ecobee's Donate Your Data program. We consider a
variety of models including simple heuristic and historical average baselines, traditional machine learning
classifiers, and sequential models commonly used for time series prediction. We evaluate the performance of
each model according to temporal, behavioural, and computational efficiency characteristics. Our key overall
finding is that the random forest algorithm matched or outperformed the other candidate models, had con-
sistently high accuracy predicting over a range of time horizons, and is relatively efficient to train for individual
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“edge” devices.

1. Introduction

In North America, up to 60% of energy usage in the residential
sector is for heating and cooling systems [1,2]. An effective method for
generating energy savings for the heating, ventilation, and air con-
ditioning (HVAC) system without large capital costs (e.g., such as up-
grading building equipment) or sacrificing occupancy comfort is ad-
justing temperature setpoints during unoccupied periods [3].
Historically this function has been accomplished using a programmable
thermostat, which when programmed correctly, can provide significant
savings. For example, previous studies often found more than 30% in
energy savings using thermostats with setbacks [4]. Unfortunately, it is
well established that the users often do not properly operate pro-
grammable thermostats and receive little or negative savings compared
to non-programmable thermostat users [5-7].

One approach to deliver savings is to apply a standard default
schedule with all thermostats. A previous, and since suspended, Energy
Star certification for programmable thermostats [8] mandated a default
program that had setback periods included. Unfortunately, the occu-
pancy patterns of an individual home can be highly unique, thus relying
on only a default schedule can result in dissatisfied users and minimal
savings [9,10]. Today, the occupancy patterns of a home may be more
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unique than ever with numerous differing lifestyles (e.g., business
travel, after school activities, teleworking, etc.). An alternative to re-
liance on the user-engagement with the schedule or standard default
schedules is to customize the thermostat's reaction to prolonged ab-
sence based on the individual occupancy patterns in the space [10,11].
To develop these models, the critical requirement is data collection
within the space. While this data has generally been available in
commercial applications and extensively tested in that setting [3], it has
been relatively difficult to collect in residential systems. Fortunately a
new class of thermostats, connected thermostats, are now actively
collecting occupancy (or occupancy-related) data. In many cases these
devices are currently already operating reactively to unexpected
changes in the state of home occupancy (i.e., occupied or unoccupied)
[71.

To properly manage the complex dynamic relationship of the
heating and cooling loads of a building, HVAC control systems should
ideally be more than just reactive; they should be predictive over short
horizons of a few hours [12-14]. Improper setbacks can cause pro-
longed occupant discomfort as the recovery from a setback (or setup) in
a home can be expected to take less than an hour, but they can vary
depending on the weather conditions or the home's thermal char-
acteristics [15]. Predictions should consider these short horizons of a
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few hours to avoid user discomfort. In addition, predictive systems
should be trained and deployed on an individual's unique occupancy
data since the occupancy patterns of each residence will be different
[10,16]. While previous research has concluded that machine learning
is an ideal candidate for the prediction of short-term occupancy pat-
terns [17], this research has often overlooked the actual data avail-
ability from devices in the field [3]. The available data in residential
buildings is rarely an explicit occupancy state of the home but rather is
related to measurements, often motion, which indicate occupancy.
Relying on motion in residential buildings has challenges. Residences
have relatively low occupant density and numerous rooms that occu-
pants may or may not be in. Occupants also tend to spend numerous
hours asleep during which motion is minimal throughout the home.
Even with imperfect predictions, it was found that predictive heating
controls in homes did not have substantial efficiency differences when
compared to predictions made by a perfect oracle [18]. In practice,
occupancy data can be sensitive information, so designed methods need
to deal with the data privacy of the users [3]. On-board “edge” com-
puting on the residential thermostats themselves — rather than remote
computing — helps maintain data privacy and alleviate data security
concerns.

In this paper, we compare the performance of numerous baseline
and machine learning methods for predicting future motion states in
homes using actual connected thermostat data. In addition to com-
paring various standard sequential and classification techniques, we
explore prediction quality versus seasonal effects, time of day, and
occupancy behavioural types. Section 2 covers the background litera-
ture and limitations of previous research on predicting occupancy in
buildings. Section 3 provides details on the implementation of the eight
models we investigate in this research and the 100 thermostats that
were used to test them. Section 4 presents and discusses the perfor-
mance of all eight models and provides detailed analysis on the best
performing model. Finally Section 5 draws final conclusions and dis-
cusses both limitations of the existing study and suggestions for future
work.

2. Background

As researchers and commercial products have sought to improve
HVAC control systems, the need to understand and model occupancy
patterns has been identified as a major contributor to improvements in
energy efficiency [16]. In general, more methods and more diverse
sensor networks have been considered in commercial building appli-
cations [3,10,17]. The application of occupancy modelling is often
undertaken in simulation [19,20] or in small field tests [10,13,21]. In
both of these situations, researchers are given considerable control over
the experiment and data collection. In Shen, Newsham, and Gunay's [3]
review of occupancy detection methods in commercial building appli-
cations, they noted that many studies did not rely on standard sensor
networks and rather required supplemental or alternative sensing
methods.

Researchers often have attempted to classify only the current state
of occupancy using various sensor types and not predict future occu-
pancy states [21-23]. The investigations monitored environmental
conditions (e.g., temperature or humidity), system interactions (e.g.,
passive infrared (PIR) or door contacts) and timing information. While
understanding the current state is useful in many applications such as
lighting control, ideal thermal controls require longer prediction hor-
izons. In extending to longer time prediction horizons of multiple
timesteps, Markov models are frequently introduced [13,19,20,24].

Li and Dong [24] developed a Markov model and tested on pre-
diction horizons from 15 minutes (min) to up to 24 hours (h) ahead.
They concluded their Markov chain was the most effective only in short
prediction lengths. This indicates the diminishing predictive power of
previous states at longer prediction lengths and motivates an inclusion
of multiple conditional features. Many implementations relied on a
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Markov models with a time-varying condition to the occupancy state
transitions [13,19,24]. The inclusion of temporal components has been
found to increase accuracy of occupancy models [21]. Based on the
prevalence of Markov models in the literature for occupancy prediction,
we included them as one of our candidate predictors. However, we do
note that simpler methods actually outperformed Markov models in our
work as we demonstrate empirically in Section 4.

The demonstrations of occupancy modelling in residential buildings
have, similar to commercial buildings, often relied on unique sensor
network and unrepresentative data to the commercially available so-
lutions. The ‘neural network house’ [25] and ‘neurothermostat’ [26]
were an early implementation of a research test home that fully learned
how to operate from its users and was intended to anticipate and ac-
commodate the needs of the residents. The ‘PreHeat’ algorithm [14]
compared observed occupancy patterns and predicted future prob-
abilities of occupancy based on the most similar days in the historic
information for only five homes. Candanedo, Feldheim, and Deramaix
[27] studied the use of hidden Markov models to define occupancy
schedules based on temperature, humidity, light, and occupancy mea-
surements. Even in their controlled environment they noted the occu-
pancy patterns were highly varied day-to-day and could be corrupted
by situations such as door and window openings or animals in the
home. Lu et al. [28] used a combination of available datasets, their own
conducted surveys, and data from eight homes they had instrumented
with door and motion sensors to develop a heating strategy based on
predicted occupancy states. All of these studies were benefited by a
commissioning process which allowed them to understand or select
sensor placements in the home. Having this level of context is difficult
to achieve with a consumer-installed product and highly diverse
building stock.

When not relying on custom experimental data, researchers have
also had access to atypical levels of service integration. Kleiminger,
Mattern, and Santini [18] utilized a cellular telemetry dataset and
predicted occupancy for 45 homes as part of a predictive heating
system. Comparing a number of methods developed by others, they
found an average accuracy of 85% in the best performing methods.
Furthermore, they quantified that on their users (and using their data
source), that the theoretical maximum limit of predictability would be
90% on average. This level of data sharing between services (i.e., cel-
lular phone, the cellular network, and the HVAC of the home) is often
not seen in consumer products and in practice could be subject to
privacy concerns.

In general, while the various residential studies often utilized a
longitudinal dataset per home similar to those available today from an
installed connected thermostat, they remain an idealistic representation
of sensing levels and interactions between services. In comparison we
rely only on the sensor network of a single sensor type (PIR motion
sensors) deployed with the thermostat after installation. Exact place-
ment of sensors and understanding of the coverage of the home is un-
known. Similarly, it remains unknown what the ability of an un-
commissioned sensor network has to predict the motion states in the
home.

3. Methodology

A description of the data source from connected thermostats used in
the investigation is described in Section 3.1. Based on the relations and
models used by previous researchers, the conditional relations to mo-
tion detection are described in Section 3.2. Finally an overview of the
selected models that were tested and compared can be found in Section
3.3.

3.1. Data

The Donate Your Data (DYD) dataset [29] from connected thermo-
stat maker ecobee Inc. was used to test the various occupancy
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Fig. 1. Distribution of remote sensors, in addition to the on-device PIR sensor,
connected with the 100 thermostats used in the sample. The dashed line in-
dicates the average number of remote sensors.

prediction models that we evaluate in this article. A general description
of the DYD dataset beyond the subset we use here can be found in other
works [30,31]. From the general population of over 25,000 connected
thermostats in the dataset, 100 thermostats were selected at random
from those that had been online over at least a 12 month period starting
in September 2016 and which supported motion sensing. Geo-
graphically, the thermostats are located across North America and are
predominantly located in single family homes. Given both the time
period and thermostat model requirements, the sample group consisted
of the ecobee3 thermostat model. The ecobee3 has remote motion de-
tection capabilities with remote sensors in addition to the motion de-
tection on the thermostat itself. The remote sensors each contain a
temperature sensor and PIR sensor and communicate using a 915 MHz
radio intended to be placed within 45 feet (13.7 meters) of the ther-
mostat [32]. The resulting sample of thermostats had on average over
two remote sensors measuring motion in addition to the one on the
thermostat. The complete distribution of remote sensors is shown in
Fig. 1. The highest number of sensors seen in this group was seven,
however the device is able to support up to 32 potential sensors. The
effectiveness of the PIR sensors at detecting occupancy in the home is
highly dependent on the sensor placement, the number of sensors in the
home, the number of people in the home, and the general mobility of
occupants throughout the day. It is not possible for the 100 homes se-
lected to identify the effectiveness of all the sensors to capture the true
occupancy of the home.

The thermostat interval data, which is reported at 5-min intervals,
was processed into 30-min intervals to better align with the schedule
blocks on which the thermostat operates and to help reduce noise in the
signal. The bins start at the zeroth and 30" min of each hour. While the
thermostat schedule operates at this frequency, HVAC equipment run-
times and user overrides are free to operate at rates higher than even
the five minute intervals of the data. In Fig. 2, an example of the
mapping from the 5-min to 30-min interval data is shown for a two
week period for a single thermostat from the sample of 100. The ag-
gregation of the data from Fig. 2a generates Fig. 2b. The occupancy
data in Fig. 2b is generated using a logical-OR across all the of the PIR
sensors connected to the device. A similar strategy was used by Klei-
minger, Mattern, and Santini [18]. In generating Fig. 2b, if all the 5-min
observations were missing, then the 30-min observation was also con-
sidered missing. If any motion was detected by any motion sensor (re-
mote, or on the thermostat itself), the 30-min block was considered as
being in the motion state. A period of missing data appears regularly at
18:30 on multiple days in Fig. 2a and b and would appear to be caused
by a recurring event (e.g., an Internet connectivity outage) but is not
diagnosable with the available data.

3.2. Candidate features for prediction of motion detection

The selection of candidate features that can predict future motion
(or occupancy) was guided by the work of other researchers in both the
commercial and residential domains outlined in Section 2. For all
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features that we consider, we indexed time t in 30 min increments so
that if t is considered the current time of interest, then t — 1 refers to
30 min before t and ¢t — 2 refers to one hour before t. It is considered
that the detection of future motion M, at time t (taking value true if
motion was detected or false otherwise) could depend on the previous
state (M;—1) [13,19] and perhaps even states before that (e.g., M;_,,
M, _3) since longer periods of motion absence or presence may be more
likely to persist. The state M; could also depend on the time of day H; as
it is noted to be an important contributing factor of occupancy patterns
in buildings [19,21,23]. H; is assigned one of 48 values in {0,1,2...,47}
reflecting the index of the 30-min bins of the aggregated data (as shown
in Fig. 2b). For example, H; = 0 corresponds to the midnight-12:30am
time bin that starts a day while H, = 47 corresponds to the 11:30pm-
midnight time bin that is the last in a day. Finally, as it has been ob-
served that occupancy patterns can be highly dependent on whether it
is a weekday or weekend [19,21,23], we considered that the state M,
could depend on W, (taking value false on a weekend or true on a
weekday).

Given occupancy states prior to M; and knowledge of H; and W, at all
times t (hour of day and weekday/weekend state are always known),
our objective in this paper is to predict occupancy states over the next
three hours, i.e., M;, M1, -, M;+s.While previous model predictive
control implementations have used prediction horizons from 15 min to
over 24 h [12-14,24], we assume that for the vast majority of residential
HVAC systems, three hours of future occupancy prediction at 30-min
intervals should provide a sufficient time horizon and granularity to
make control decisions that could have a significant impact on HVAC
efficiency and allow enough time to recover temperature before an
occupant may arrive. Nonetheless, all predictive models we consider in
this article could be extended to longer or more granular time horizons
if desired.

In the training and evaluation of various models, we note that as
observed by Page et al. [19], seasonality is another key consideration in
predicting occupancy. Because all of our models are intended to be
continuously trained on recent data, we addressed the issue of seasonal
variation by testing at four different times of the year. The test start
dates are shown in Table 1 (right column) and were designed to re-
present a summer, winter, spring, and fall season. For each of these test
cases, the models for each of the 100 thermostats was trained on the
previous eight weeks from the test start date. The testing of the models
was conducted on the two weeks of data starting on the test start date.

3.3. Models

In our empirical comparison, we consider three groups of models:
simple baselines, standard classification models, and sequential models.
The baseline models included the most frequent motion state for a re-
sidence (independent of anything else) as well as simple models that
used only a single feature such as the time of day or the previous oc-
cupancy state; they were intended as simple reality checks to ensure
that the more sophisticated learning methods were indeed able to learn
more complex and better performing predictive models. The classifi-
cation models predict the motion state at a single time point and hence
require training 6 independent models for M, through M,,s. We speci-
fically select logistic regression [33] and random forest [34] because of
their widespread use and well-known strong performance on general
classification tasks, but we acknowledge other machine learning
methods could be used. For example, support vector machines [33]
were tested however their performance was ultimately similar to that of
logistic regression. In contrast, the sequential models simultaneously
predict for the full sequence of six motion states (M;, M1, ...,M;;s) in a
single prediction. The sequential models we consider are the Markov
model (MM), the hidden Markov model (HMM) [35], and the recurrent
neural network (RNN) [36]. The potential advantage of sequential
models in general is that they may provide more sequentially coherent
predictions than independent classification models; for example,
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Fig. 2. PIR motion detection from a single thermostat and its remote sensors using (a) 5-min interval data and (b) data mapped to 30-min intervals.

Table 1
Test start date for the four seasonal tests.

Test Season Test Start Date
1 Summer 2017-08-06
2 Winter 2017-01-15
3 Spring 2017-05-14
4 Fall 2016-10-16

sequential models may be less likely to predict a transient motion at a
given timestep if the timesteps before and after are not predicted to
have motion. Unlike MMs, HMMs and RNNs both use a hidden state
representation that can learn latent behavioural characteristics of oc-
cupants. Compared to the more historically popular HMM, the RNN is a
state-of-the-art deep learning method that is often observed to outper-
form the HMM.

Whether these model differences are actually important for the
performance of residential motion prediction with our data and eva-
luation setting is a question we seek to evaluate empirically. But first we
outline each of these models in more technical detail.

3.4. Baseline models

To compare the results of the various testing methods, three simple
models were constructed to be used as baselines in comparison. The
first model calculated the most frequent state (motion or no motion)
during the training period and used this value for all predictions. For
example, if a house during the training period was in a no motion state
over 50% of the time, the predictions were always of a no motion state
for any M;. The second model calculated the most frequent state during
a certain time bin H, over the entire training period for a given day type
W, and used this value for prediction of M; based on the day type and
time bin at time t. The final baseline model for testing copied over the
last observed state M;_; to predictions for all of M;, M1, ..., Myys.

3.4.1. Logistic regression

Logistic regression is a commonly used classifier. For the motion
prediction task in this article, the logistic model predicts the probability
of motion M, at timestep t conditioned on a vector of features x, with
length Ix,| as follows:

1

MIx) = —— .
p(M;1x,) 1+ e—(ﬁ(ﬁz‘xt BiXty)

(€]

Specifically for this paper, we define a unique binary feature x,, for
every combination of previous occupancy state M,_; (2 possibilities:
motion or no motion), time bin H; (48 bins), and weekend indicator W;
(2 possibilities: weekend or weekday). This leads to a total of
IM;_1 X H; X W;| = 192 possible combinations leading to a vector length
of Ix,| = 192. We specifically use a one-hot encoding for x, that assigns
each of the 192 combinations of feature configurations M,_; X H; X W;
to a unique index i in X,; hence, in a state at time t with feature con-
figuration i, we setx,; = 1 and then for all other j # i, we set x,; = 0. We
use this one-hot encoding for x; to allow logistic regression to learn an
individual weight g, for each specific feature configuration i and cor-
responding binary feature x,, as shown in Equation (1). The parameters
B €R for k €{0,1,...,192} are learned in order to maximize the con-
ditional likelihood of the training data.

Discriminative classification methods such as logistic regression are
widely used since they directly optimize the conditional likelihood of
the target classification variable. They are robust to feature dependence
(correlation) as opposed to other non-discriminative classification
methods such as Naive Bayes. Implementation of the logistic regression
classifier in this article was performed using Scikit-learn [37], which
exposes an additional hyperparameter constant C corresponding to the
inverse of the regularization strength on an L, regularizer intended to
help prevent overfitting. During the training of each model (one model
for each thermostat in each test), the hyperparameter C was tuned using
three-fold cross validation by searching for the best value
C € {1074, 1073,...,103, 10%}. Because each classifier is only trained for a
single timestep prediction, we trained six independent logistic regression
models for each thermostat to predict for each future timestep M;, M.,
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3.4.2. Random forest

Random forest is known as an ensemble classification technique
which trains multiple decision trees [34]. In predicting the class label,
the decision is based on the mode of the multiple trees as opposed to the
result of a single tree. Compared to single decision trees for classifica-
tion, a random forest is less susceptible to overfitting [34]. Unlike the
other tested sequential and classification models, the input features
were not encoded — a distinct implementation advantage. By default
with the Scikit-learn library [37], the classifier learns 10 trees. Similar
to the logistic regression implementation, we used three-fold cross va-
lidation to tune the remaining hyperparameters of the random forest for
each thermostat's models independently via grid search. In particular,
the hyperparameters to tune included the maximum depth limit of the
trees (choices: {3, o0}) and the minimum number of data samples re-
quired at a leaf node (choices: {1,3,10}). Similar to the logistic regression
classification model, we trained six independent random forest models
per thermostat to predict for each future timestep M, M, 1, ..., Myys.

3.4.3. Markov model

The first and simplest sequential model that we consider is the
Markov model depicted as a simple Bayesian network graphical model
in Fig. 3. In this model, we assume that the motion state M; at time t
depends only on the previous motion state M, ; as well as the other
known values of H, and W,. Formally this means that we need only learn
the conditional probability P (M;IM;_,, H;, W,) from our data, which for
maximizing conditional likelihood in a tabular Markov model corre-
sponds to simple empirical frequency estimates.

Given the learned P(M;IM;_,, H;, W/), we can then instantiate a
Markov chain for prediction over future timesteps as shown in Fig. 4 by
using this same conditional probability for all timesteps. On one hand,
this corresponds to a homogeneous Markov model (one whose transi-
tion probability does not change with timestep t), but on the other
hand, since time H; and weekday/weekend status W, are conditioned on
for each transition, this could be considered a time-dependent in-
homogeneous Markov model as often used in the related work dis-
cussed in Section 2.

Once the Markov model transition parameters are learned and the
model instantiated as in Fig. 4, the model can be used to predict the
motion state for future timesteps. Specifically, we use the pgmpy tool
[38] to perform marginal probability inference for each of the following
six conditional queries:

P(M;\M,_, H;, W)

P(MH-llM[—l’ Ht’ ‘/I/[s Hl+l7 u/l+1)

'

—>

Fig. 3. Graphical model representing the conditional dependencies between
current motion (M,), previous motion (M,-;), hour of the day (H,), and day type
WD).
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Fig. 5. Representation of states (Z;) and observations (M;_;, H,—;, W;_1)) in a

general hidden Markov model. The shaded cells are observed during training
and testing.

P(Miy5IM;_y, Hy, W, .., Hyys, Wigs)

We can then use the respective highest probability motion state of
each conditional query as the prediction for timesteps M;, M1, ...,
M,,s. Unlike the classification models which were trained in-
dependently per timestep, we only learn and do inference on one
Markov model to predict for all future timesteps.

3.4.4. Hidden Markov model

The hidden Markov model (HMM) [35] is a variation of our Markov
model (section 3.4.3) depicted in Fig. 5 in which we let (M;, H;, W})
collectively represents the observations at timestep t. A hidden state Z;
at time t is intended to represent latent characteristics of the motion
history (e.g., behavioral patterns) that are predictive of future ob-
servations. The hidden state Z was chosen to only have two possible
values (i.e., occupied or unoccupied). In a test allowing a third potential
state for Z, the additional state was not found to improve results.

The HMM was trained on sequences of 24 complete observations
from t — 24 to time t — 1. In cases of a missing observation, the se-
quence was rejected. Because the ground truth state is not explicitly
observed in the data, training the HMM involves learning both an ob-
servation probability and state transition probability function with the
expectation maximization (EM) algorithm (also known as Baum-Welch)
[35], which is implemented in the HMM Toolbox [39]. We allowed up
to 100 EM iterations during training and repeated the entire training
procedure 30 times, retaining the highest accuracy model from the 30
training runs.

After training, the HMM can be used for prediction. For prediction,
a history of the previous 12h segments (24 timesteps) was provided.
The forward-backward algorithm [35] was used to find the probability
of being in a final state (Z,_;) given all the observations (i.e.,
P(Zi_1|(Mi—24, Hi—24, Wi—24), -,(Mi—1, Hi_1, Wi_1))). Using the transla-
tion matrix found during training with EM, the next state (Z;) was
calculated. The Z; to Z,, s states were calculated sequentially. Using the
emission factor, also calculated during EM, the state values are trans-
lated to the probability of an observation being made. Given that the
hour and weekday value are known, we are able to compare just the
two potential observation probabilities representing a motion or no
motion value at that time and day-type combination. Of the two ob-
servations, the one with the highest probability of being observed is
selected and its corresponding motion state taken as the predicted
value.
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Fig. 6. Schematic of the implemented RNN. The input feature vectors (M,_,, H,, W;)) are passed into two layers of LSTM cells and results in a predicted motion state
(M,). In the orange input vectors, the input feature M,_; had an additional unobserved state value introduced to allow later inference. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

3.4.5. Recurrent neural network

The recurrent neural network (RNN) is a deep learning approach
often applied in sequential applications [36]. Shown in Fig. 6, a long
short-term memory (LSTM) network [36] provides latent memory of
history based on the input combination of features at each timestep.
Our features (M,_i, H;, W,) collectively represent the observations at
timestep t. An RNN is capable of learning latent behavioral patterns of
residences similar to the function of the latent state in HMMs. RNNs
support much more complex architectures than HMMs and do not have
a probabilistic internal state. At time of inference it is just efficient
feedforward.

Our RNN (Fig. 6) was constructed in Keras [40]. The architecture
was set following the tuning of a number of parameters manually
though successive runs and monitoring improvements in accuracy
during testing. The number of LSTM layers was selected as two (from
the choices: {1,2}) and the number of elements to each layer was se-
lected as eight (from the choices: {4,8,16,32}). With each LSTM layer a
dropout layer was included to help reduce overfitting. The fraction of
input layers to be dropped out was set at 0.2 (selected from the choices
{0.1, 0.2, 0.3, 0.4, 0.5}). The size of each batch was varied from
{25,50,100} and set to 50. Finally, the number of epochs to train was
tuned by monitoring the overfitting during training with five being the
chosen number. A complete overview of the finalized architecture can
be seen in the Appendix.

The RNN was trained on sequences of 30 complete observations
from ¢ — 24 to time ¢ + 5. The previous motion state had a new value
introduced so that now there was an unobserved value. As such the input
motion state M;_; € {0,1,2}. This new state represented a missing pre-
vious state needed later for inference for time t to t + 5. During both
train and testing a motion state (green cells in Fig. 6) was predicted for
all timesteps ¢t — 24...t + 5. All off of the output values were considered
during training accuracy, however during our analysis, we only utilized
the outputs for the ...t + 5 timesteps.

4. Results and analysis

To briefly review our evaluation methodology, we compared each of
the prediction methods discussed in Section 3 on 100 homes in the
ecobee Donate Your Data (DYD) dataset as described in Section 3.1. For
each of the four seasonal test dates listed in Table 1, we trained the

model on the previous eight weeks of data and tested on the following
two weeks starting on the specified day. In the following sections, we
seek to evaluate the overall accuracy of these methods as well as var-
iation in accuracy as a function of season, time of day, weekday vs.
weekend, and simple user behavioral patterns. We also compare the
computational requirements of the models and attempt to quantita-
tively address the relationship between motion detection and occu-
pancy.

4.1. Overall accuracy of methods

We begin our analysis by examining the daily average accuracy for
each of the 100 thermostats for all four seasonal test dates. Specifically
we define daily average accuracy for a single thermostat as the fol-
lowing expression averaging over all 14 days in the test period and each
of the 48 30-min timesteps in a given day:

LL%
14 48d:1t

where M,d is the predicted value by the model in time bin t on the given
test day d, M is the corresponding actual observed motion value in the
data, and I [-] is the indicator function that takes value 1 if its argument
is true and O otherwise.

In Fig. 7, the distribution of daily average accuracy values for the
100 thermostats is presented as a boxplot for each prediction method
and each of the six future prediction timesteps. By analyzing all future
prediction timesteps from M, to M,,s, we can observe whether certain
predictors are better over short or longer prediction horizons and the
overall difficulty of prediction at each horizon. For the shortest horizon
M,;, we make a few key observations: the best median performance is
given by a near tie between random forest, logistic regression, and the
Markov model with just under 0.80 average accuracy; the previous
state baseline also does well here since one would naturally expect
adjacent timesteps of motion observation M;_; and M; to be highly
correlated. At the longest prediction horizon of three hours in the future
given by M,,s, the best methods still achieve a median accuracy of
approximately 0.75 followed closely by the RNN, which appears to
perform better for longer horizons than the shortest horizon M;. The
performance of most methods appear to converge to a similar
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lengths with 95% confidence intervals for weekdays and weekends using the
random forest algorithm.

performance to the most frequent state in the time bin baseline. As past
motion becomes less indicative of future motion for prediction, the
frequentist approach to prediction based on time of day and day type
should become our best estimation. We observe that random forest
generally provides improved median daily average accuracy across all
time prediction horizons with 1st and 3rd quartile accuracies also better
than or comparable to the best performing methods. This indicates that
random forest provides reliably strong performance across the range of
thermostats in the evaluation though not substantially better than the
logistic regression or the Markov model. Overall, while our sample size
was limited to 100 thermostats, we believe the upcoming analysis in
Figs. 8-11 demonstrates a range of diverse occupancy behaviours in our
sample and hence increasing the sample size beyond 100 is unlikely to
appreciably increase the diversity or significantly change the ranking of
the top-performing models.

In comparing these results to previously published results in dif-
ferent occupancy prediction settings, other studies have also found
accuracy values around 0.80 to 0.85 [3,18]. The studies achieving

higher accuracy could be a result of utilizing a different sensing
method, having more predictable occupancy patterns or higher ratios of
sensing to occupants. In a sample of homes, it was found that the the-
oretical limit of predictability may only be 0.90 [18] owing to natural
noise in the sensing process. That baseline however was using an ex-
tremely accurate sensing technology in cellular network triangulation
and different movement patterns which would change the theoretical
maximums in our study.

4.2. Seasonal effects

Based on the observations by Page et al. [19], seasonality was ex-
pected to impact occupancy patterns, hence we postulated there may be
seasonal variation in prediction accuracy if some seasons had more
stochasticity in occupancy than others. Fig. 8 shows the same daily
average accuracy for each thermostat as computed in Equation (2), but
grouped by season and only for the top method, random forest. At each
prediction horizon, the seasonal performances are generally statistically
indistinguishable given the 95% confidence intervals. While not sta-
tistically significant, the data weakly suggests that Spring is the most
predictable season while Fall appears to be harder to predict for short
time horizons. Overall, the results generally suggest that while there
may be some seasonal variation, motion can be predicted in all seasons
using random forest with a fairly high accuracy (i.e., >0.75).

4.3. Results by day type

In Fig. 9, the median average thermostat daily error values with
95% confidence intervals are shown for all prediction horizons for both
weekdays and weekends. As with seasons, the weekday vs. weekend
performance are generally statistically indistinguishable given the 95%
confidence intervals. While not statistically significant, the data weakly
suggests that it may be slightly easier to predict for some middle time
horizons for weekdays than weekends. This could indicate people's
schedules on weekdays are more predictable (e.g., given a weekday
work schedule) than on the weekend when schedules may be more
varied.

4.4. Results by time of day

We now wish to investigate how model prediction accuracy varies
over the day. In Fig. 10, we show a discrete heatmap for the median
average accuracy across all thermostats using the various models versus
the time of the day. We only show predictions made for the time period
as a prediction at the two time horizon extremes of (a) M, and (b) M;s.



B. Huchuk, et al.

Logistic regression

Markov mod

) Random fore

Hidden Markov mod

Recurrent neural net

Most frequent stat

Most frequent state in_that time b
Previous state

(a)

Building and Environment 160 (2019) 106177

QQ PSEEPIISPISPISS QQ RIS SR Y QQO,QQQQQ S D QQ VQQ

"L'b&%‘o’\‘b%

0.6

Logistic regression

Markov model

Random forest

Hidden Markov model

Recurrent neural net

Most frequent state

Most frequent state in that time bin EIIl
Previous state

AT AT DT AR AR TASTNTADTADT ST Y ) T
Hour of Day

|
0.8 0.9
Median Accuracy

0.7

P PP PP PPN PPN P ENELILSIS I LPSELILDD
\QQ/QQQQQ,\Q%QO)QQQQQQQ(QQ\,/\Q%QQQQQ%QQ

O o

0.6

SSHEARNARNEPNAIPNIIN

Hour of Day

TR A P

T
0.8 0.9 1.0
Median Accuracy

0.7

Fig. 10. Thermostat average daily accuracy for the various methods for predictions made for that time of day as a prediction of (a) M; and (b) M;ys.

For example, the 9:00 bin is for predictions of that time made at either
8:30 for M, or 6:00 for M,,s. The intensity of the shade implies a higher
median accuracy value. The logistic regression, Markov model, and
random forest are the best performing models and exhibit similar
temporal patterns of prediction accuracy across the day. In contrast the
hidden Markov model and RNN appear more similar to the baseline
using the most frequent state in that time bin.

Unsurprisingly, the highest accuracies are found during the middle
of the night (1:00 to 6:00) when most residences have little motion
detected. All models consistently appear to have the most difficulty in
the late evening (around 22:00) for predicting M;; we conjecture that
while households tend to wake up reliably around the same time every
day, exact bedtimes may be less predictable. For the longer horizon
(three hours ahead) prediction of M, s, average predictive accuracy is
lower than for M; as expected, but with increased uncertainty starting
around 23:00 persisting until early into the morning. Overall, while
predictive accuracy for the best performing methods is lowest in the
evening period up until bedtime, these may be the riskiest times for
deep setbacks; hence this observed reduction in prediction accuracy
may not have a major impact on practical on thermostat controls that
may only attempt deep setbacks in the more predictable earlier parts of
the day.

4.5. Results by user type

Now we wish to assess prediction accuracy over a range of user
behavioural types, namely the average amount of motion sensed by a
thermostat in a household. In Fig. 11, the median daily average accu-
racy per prediction model is plotted in a discrete heatmap for different
ranges of user types in columns; the median is taken over all thermo-
stats satisfying the user type conditions. The user type was quantified as
the fraction of time that a thermostat detected a positive motion state
during the eight week training period. For example, the thermostat for a
user type of 0.6 would indicate that an active motion state is detected
on average 60% of the time periods in a day. We remark that no homes

in the selected 100 thermostats showed an active motion state higher
than 70% of the time.

Fig. 11a shows the 30 min time horizon prediction for M; while
Fig. 11b shows the three hour time horizon prediction for M,,s. In both
figures, higher accuracy is attained by all methods for users with either
a large or small fraction of active motion (i.e., in the (0.0, 0.1] and
(0.6, 0.7] ranges). The random forest, Markov model, and logistic re-
gression are consistent across all ranges of user type, with the range
(0.3, 0.5] showing the lowest accuracy owing to the high uncertainty of
motion detection for users in this range. As for the time of day analysis,
the baseline method of previous state performs well for M, in Fig. 11a,
but poorly for M,,s in Fig. 11b. The most frequent state method does
poorly for both short and long prediction horizons for user types greater
than 0.3, since it lacks the context of time. Overall, while it is harder for
all models to predict in the (0.3, 0.5] range of user types, this analysis by
user type does not reveal the weakness of some of the methods (e.g.,
HMM, RNN, most frequent state in that time bin) as clearly evidenced
by previous analyses.

4.6. Model implementation requirements

Next we examine the computational requirements for each predic-
tion model to determine their ability to be implemented on the low-
level hardware at the “edge” of the computing system (i.e., on the
thermostat itself). This analysis is shown in Table 2 with training and
inference (prediction) times displayed for a single thermostat. The
training time was estimated for training a single thermostat during a
single seasonal test. Included in the training time was hyperparameter
estimation (when done online for each thermostat) and multiple
iterations during training such as the five epochs with the RNN or 30
iterations of the HMM. The time for inference was the time to predict
for a single timestep. All timings are reported for the same laptop
computer with a 2.3 GHz Intel Core i5 processor and 16 GB of RAM.

All machine learning methods expose additional tuning parameters
called hyperparameters that can be adjusted to improve learning and
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Fig. 11. The median value of thermostat average daily accuracy for the various methods at the (a) M, timestep and the (b) M., s timestep given the average daily

fraction of the day with detected motion.

Table 2
Estimated inference and training times for the proposed models.

Method Training Time (s) Inference Time (s)
Logistic regression 0.16 0.0005

Markov model 0.20 0.001

Random forest 0.38 0.001

Hidden Markov model 240 0.005

Recurrent neural network 10 0.01

generalization quality. In the timing results above, we only showed
times for the best global hyperparameters but did include the time to
tune parameters for an individual thermostat model. However, it is
critical to point out that it is inherently much easier (and faster) to tune
hyperparameters for some predictors than others. For example, logistic
regression typically only exposes a single hyperparameter (i.e., reg-
ularization strength), whereas at the other extreme, RNNs have a large

number of hyperparameters (number of layers and hidden units, set-
tings for dropout if used) whose adjustment can drastically affect both
learning performance and training time.

When considering the additional overhead of hyperparameter
tuning, we remark that HMMs and RNNs required some of the most
complex tuning compared to the more easily tuned logistic regression,
Markov model, and random forest. Hence in reality, the training times
for the HMM and RNN would be even larger than shown. However,
these deficiencies of the HMM and RNN are all to some extent a moot
point given the performance of the three other machine learning
methods. Notably, random forest performed best across all settings in
the previous evaluation discussion and is among the most computa-
tionally efficient methods for both training and evaluation. While
“edge” hardware on the thermostat would be considerably less pow-
erful than the laptop used in the evaluations, at even 100x slower,
random forest could still be trained in under a minute and predictions
still made in a fraction of a second. If the memory were also extremely
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limited, we remark that logistic regression and the Markov model might
be preferred over random forest. That is, both logistic regression and
the Markov model yielded high accuracy and fast inference and training
times comparable to random forest, and furthermore each require
learning approximately 192 parameters requiring <1 kB of memory,
which is more than an order of magnitude smaller than the typical
memory footprint of random forest. We also remark that due to their
simplicity, the learned models of both logistic regression and the
Markov model can be easily inspected and interpreted for diagnostic
purposes.

4.7. Effects of the number of remote sensors

Given that we only had access to data from PIR motion sensors and
the existence of ground truth occupancy is not available for the DYD
dataset, it is difficult to completely assess the effectiveness of the PIR
data and the models at predicting occupancy. In an attempt to establish
upper bounds on the effectiveness of using PIR for detecting motion, we
looked at the relative increase in the motion detection rate as additional
remote PIR sensors were used in a given residence. Of the 25,000
thermostats in the full DYD dataset, we examined the subset of 4,400
thermostats with both PIR motion sensing on the thermostat and three
additional remote PIR sensors and calculated the average number of
motion detections per day per thermostat. Fig. 12 shows the median
value as more sensors were added along with 95% confidence intervals.
The results show that the addition of one sensor increases detection by
almost 30%. After this, there appears to be diminishing returns with
each additional sensor added. The difference between zero and three
additional remote sensors is almost a 40% increase in detections. As
sensors continue to add some values, we acknowledge our sensor net-
works are often missing events, meaning our possible accuracy is less
than 100%. The theoretical limit of accuracy below 100% has similarly
been identified by other researchers [18]. Unfortunately, we are unable
to calculate the magnitude of false positive or false negative events by
properly comparing occupancy to motion because of a lack of ground
truth data.

We remark that the previous analysis does not account for potential
home-specific effects such as the size of the home, number of floors, or
number of occupants in the home. Nor does it address sensor specific
concerns such as remote sensor placement (e.g., facing open space
where normal paths are and not facing a wall or furniture) and activity
type (sleeping versus active times). These variables could all affect the
capability of the remote sensors to accurately detect motion in the
home. Despite these potential caveats, we believe the one key take-
home point of Fig. 12 is that if we consider motion to serve as a sur-
rogate for occupancy during waking hours, then there would be limited
value in terms of increased motion detection of having more than one
on-thermostat PIR motion sensor and three additional remote PIR
sensors. Furthermore, four PIR sensors is not unreasonable given the

N
=
T

N
N
T

[
e8]
T

Daily average number
of active motion states
N
o

—
[e))
T

1 1

0 1 2 3
Number of remote sensors

Fig. 12. Average number of daily motion states based on the number of remote
senors used across the home on a sample of thermostats with three remote
sensors. The 95% confidence intervals are shown.
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thousands of residences that already have this many sensors in the DYD
dataset.

5. Conclusions and future works

New generations of “smart” residential thermostats attempt to adapt
HVAC controls based on changes of occupancy state of the home. In
order to be most effective in managing the delayed thermal effects of
the home, these thermostats need to go beyond reacting to the current
occupancy state and instead predict future occupancy state. Using
ecobee's Donate Your Data dataset of connected thermostats having
multiple PIR motion sensors as a proxy for occupancy, we evaluated a
wide variety of occupancy prediction models to evaluate which are the
most accurate and computationally viable for implementation on the
“edge” (i.e., on the thermostat itself). We also considered how many
motion sensors would be needed in a residence and found that im-
provements in motion detection after installing four PIR sensors (one on
the thermostat and three remote) would not be substantial.

Using a set of candidate features consisting of previous motion
states, time of day, and weekday vs. weekend status, we found a simple
random forest machine learning model to slightly outperform logistic
regression and a Markov model and to significantly outperform simple
baselines as well as Hidden Markov Models (HMMs) and Recurrent
Neural Networks (RNNs). We also found the best models (random
forest, logistic regression, and Markov model) to be robust to a range of
conditions including the time of day, weekday versus weekends, and for
homes with differing occupancy rates. The random forest model had the
additional benefit of being implemented without feature encoding,
meaning it was able to identify those more complex relations without
explicit feature engineering. Computationally, we observed random
forest, logistic regression, and Markov model to be most efficient in
terms of training and prediction time with logistic regression and
Markov model offering the smallest memory footprint as well as in-
terpretability that could support diagnostic purposes. Given the rela-
tively small feature space, it is postulated that the effectiveness of the
logistic regression and Markov model could be replicated by a lookup
table generated on device. However, with the inclusion of any addi-
tional features that would no longer be the case.

Future directions of this work will seek to identify or collect datasets
that contain similar logged data for motion sensors but additionally
with ground-truth for occupancy and alternative occupancy proxies.
Further, we aim to integrate the prediction strategies developed in this
paper with control strategies to quantify achievable energy savings with
occupancy prediction. At that time, more tuning and model analysis
may be required to differentiate false positive and false negative oc-
cupancy detection errors as both have different consequences. For ex-
ample, a false positive (occupancy predicted true when actually false)
may have an energy penalty due to unnecessary HVAC use; however, a
false negative (occupancy predicted false when actually true) will lead
to occupant discomfort if thermal controls are reduced due to this error.
Finally, other deep learning methods are continuously being improved
and may provide additional insights, particularly with the inclusion of
additional (sensed) features. While our analysis was limited to data up-
sampled to 30-min intervals, this could for some users actually cause
energy increases [41]. This potential issue should be better quantified
in order to determine an appropriate temporal granularity for occu-
pancy prediction to enable optimal HVAC control and energy savings.

Due to NDA restrictions, we cannot directly share the data used in
this article, but readers are freely able to apply to ecobee for access to
the Donate Your Data dataset that we used. The code used for this
analysis is freely available in the repository: https://github.com/chuck-
b/ml_occupancy_model_comparison.
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The final architecture of the RNN is shown in Fig. 13. The summary, a generated output from Keras [40], shows the particular layer types and

their dimensions. Read top down, the LSTM units are followed each time by a single dropout layer. The time distributed layer applies a dense layer to
each element of the sequence ahead of the activation layer. Our activation layer used a sigmoid function.

Layer (type) Output Shape Param #
1stm (LSTM) (None, 30, 8) 9504
dropout (Dropout) (None, 30, 8) 0
lstm_1 (LSTM) (None, 30, 8) 544
dropout_1 (Dropout) (None, 30, 8) 0
time_distributed (TimeDistri (None, 30, 1) 9
activation (Activation) (None, 30, 1) 0

Total params: 10,057
Trainable params: 10,057
Non-trainable params: @

Fig. 13. Keras output showing the final layer structures and shapes for our RNN model.
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