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DEMAND-DRIVEN BUILDING CONTROLS: A FRAMEWORK AND LESSONS LEARNT
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ABSTRACT

Demand-driven building control is an emerging
approach to mitigate the increasing pressures on
buildings and facilities for requirements of energy and
comfort services. This study proposes a framework that
integrates online learning capabilities to make building
systems adapt to occupants’ actual energy and comfort
demand. Based on the framework, two types of control
strategies are developed: occupancy-based and thermal-
preference-based demand-driven controls. Both of them
have been implemented in an office building, keeping
occupants in the loop of building operation under
realistic conditions. This paper first introduces the
proposed framework, and then presents two types of
controls applied in for a case study. Lastly, lessons learnt
from conducting them in the field tests are discussed.

Keywords: smart buildings, occupant behavior, thermal
comfort, demand response, machine learning

NONMENCLATURE
Abbreviations
HVAC Heatl.n.g, \{entllatlon, and air-
conditioning
PID Proportional-integral-derivative
BMS Building Management System
HMI Human-machine interface

1. INTRODUCTION

Globally, heating, ventilation, and air-conditioning
(HVAC) in buildings are critical services, consuming
significant amounts of energy and providing comfortable
indoor environment for occupants.

Occupant behavior in buildings such as presence,
absence, and preferences on the local indoor climate has
a significant impact on energy use of building operation
and occupants’ thermal comfort. The conditioned rooms

are not always fully occupied by occupants, especially in
office buildings [1,2]. This kind of occupant behavior
could cause more energy to be consumed by building
systems during non-occupied hours than during
occupied hours [3]. Moreover, occupants’ thermal
preferences are individual, as they are influenced by time
of day, age, sex, and culture [4,5]. Instead of deploying
average thermal comfort for the built indoor
environment, creating occupant-centric indoor climate
based on occupants’ thermal preferences can improve
their comfort satisfaction. Therefore, having a better
understanding of occupant behavior and preferences is
crucial to achieving both occupant comfort and energy-
efficient building operation. This paper proposes a
framework for demand-driven building controls, and
discusses lesson learnt from a case study.

2. FRAMEWORK

Controlling HVAC systems to respond to occupants’
actual requirements on energy and comfort is a
challenging task. First, occupants’ demand for energy
services is variant because their presence and absence
are highly stochastic within buildings. Likewise, their
perception of comfort is individual and subjective,
influenced by dynamic conditions. Second, HVAC control
systems should have adaptive capabilities for dynamic,
time- and space-varying contexts, with the objective of
reducing engineering and implementation costs.

For these challenges, we propose a framework [6]
embedding online learning capabilities for HVAC system
controls. It is designed to integrate a two-layer control
scheme: high-level control and local control, as shown in
Fig 1. The intelligent demand-driven control adapting to
occupant behavior is employed for the high-level control.
It determines control commands (temperature setpoints
and operational modes) over time for the local control by
learning occupants’ actual demand on energy and
comfort services under relevant environmental contexts.
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High-Level Control:
Intelligent demand-driven control strategy for energy saving and comfort
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Fig 1. Framework for demand-driven building controls

According to the control commands specified by the
high-level control, the local control with proportional-
integral-derivative (PID) algorithms is in charge of
adjusting actuators to maintain indoor space at an
approximately constant climate level.

For the high-level control, four modules are
deployed into three sub-layers to achieve demand-
driven control:

e Data acquisition (Module 1): Collects sensor data
and occupant feedback from the space controlled, as
provided from a Building Management System (BMS)
or from sensing infrastructure directly.

e Learning processes (Modules 2 and 3): Process
sensor signals into the required information and
maintain datasets that store historical and current
data. Machine-learning algorithms are employed to
learn room occupancy and occupants’ thermal
preferences from the prepared datasets.

e Decision making (Module 4): Determines time-
dependent commands for the local control,
according to the occupants’ current and predicted
behavior provided by the above modules.

3. CASE STUDY

Based on the proposed framework, two types of
demand-driven strategies have been developed to
improve energy efficiency and thermal comfort during
building operation. The first type is occupancy-based

demand-driven control, consisting of Modules 1, 2, and
4 in the high-level control together with the local control.
It aims to make HVAC systems adapt to room occupancy
for saving energy without compromising room
temperatures during occupied periods. The second type
is thermal-preference-based demand-driven control
with the purpose of enhancing occupants’ indoor
thermal comfort. For the latter, a thermal preference
learning process in Module 3 replaces Module 2 that
based on the occupancy learning process.

To obtain realistic results and to validate the
effectiveness of the proposed approaches, the controls
have been implemented in an office building under real-
world use conditions. To make controls more ‘generic’ to
actual buildings and avoid expensive cost for the building
operation, the data used for the controls is selected from
standard sensing units, including occupant movement,
human interaction with the conditioned environment,
indoor and outdoor climate. To evaluate energy-saving
potentials, each room is equipped with one or two
energy meters to record cooling energy usage.

The high-level controls in this study have been coded
in MATLAB and executed on a workstation with network
access to a BMS of the case study building. Throughout
the field tests, the high-level controls ran in "while" loops
on the workstation to read and process sensor signals,
learn occupant behavior and preferences online while at
the same time—updating datasets, and infer real-time
control commands for the local controllers.

3.1 Occupancy-based demand-driven control

Using the case study, two different occupancy-based
demand-driven control strategies were developed and
conducted in the building [1,2]. Three commonly used
sensing units are selected to measure required data:
temperature sensors for monitoring indoor climate,
passive-infrared motion sensors for extracting room
occupancy, and human-machine interfaces (HMI) for
occupants to view and modify temperature setpoints.

For the first control strategy in [1], an occupancy
learning process is embedded to predict occupants’ next
presence and duration in the remainder of the current
day. In this process, a supervised learning algorithm (k-
nearest neighbor) is used to learn room occupancy from
the datasets captured from the individual rooms. Then
the predicted information is used by rules specified in the
decision-making module to infer temperature setpoints
of the comfort and setback modes for the local
controllers to adjust room temperatures.

To further explore occupant behavior for improving
the operational performance, the second occupancy-

2 Copyright © 2019 ICAE



based demand-driven control extracts more occupancy-
relevant features from the motion signals [2]. These
features were defined into three categories: time-based,
guantitative, and deviation features. They are then used
by two learning sub-modules in the occupancy learning
process: occupancy pattern learning, and occupants’
next presence and duration learning. To recognize
occupant patterns without manually labeling data, the
first learning sub-module uses an unsupervised learning
algorithm (i.e. k-means) to cluster them. The clustered
occupancy patterns are transformed into two types of
datasets: global and local training datasets. According to
the occupancy-related features in the current day, the
second learning sub-module selects the final training
dataset from the datasets clustered by the first learning.
It then predicts the occupancy information using the k-
nearest neighbor algorithm. Finally, rules defined in the
decision-making module use the predicted occupancy
information to determine comfort, idle (1°C higher than
the comfort), deep idle (0.5°C higher than the idle), and
economy (shut down systems) temperature setpoints for
the local controllers to control the cooling systems.

Fig 2 displays examples of thermal distributions of 11
rooms in two moments of a day during the experiment.
The cooling systems in half of the rooms have entered
into the setback mode at 5 pm to saving cooling energy
as their occupants are not in the offices or are highly
likely not to return on the current day. Across the entire
space, the experimental results of the proposed
occupancy-based demand-driven controls reported up
to 21% energy savings as compared to the operational
mode using standard schedules to control the HVAC
systems. Both field tests indicated that the energy-saving
potentials were inversely correlated to the occupancy
rates of the individual rooms. More Energy was saved in
meeting rooms and single-person offices than in multi-
person offices. The change of the temperature setpoint
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in a space using the available HMI was used to infer
occupant satisfaction with the thermal environment.
During the test period of the first occupancy demand-
driven control, the temperature setpoint was only
modified once by an occupant [1]. During testing of the
second strategy, the temperature setpoints were not
adjusted by the occupants throughout the entire test [2].

3.2 Thermal-preference-based demand-driven control

To reduce the amount and types of sensors
necessary, the thermal-preference-based demand-
driven control in [5] first extracts the most effective
features from each category of time, indoor and outdoor
climates, and occupant behavior. Based on the selected
features (hour of day, outdoor and indoor temperatures,
and room carbon dioxide concentration), preference-
related and noise data is defined to construct the final
datasets in the thermal preference learning process.
Previously evaluated for performance among four
different machine-learning algorithms, the learning
process uses a two-layer feed-forward neural network
for supervised learning of occupants’ thermal
preferences. Finally, the thermal preference models of
the individual rooms and rules defined in the decision-
making module are used to infer real-time temperature
setpoints for controlling room temperatures.

The field test in the office building indicated that
occupant thermal preferences differed from each other
in both time horizon and temperature levels (a 4.5°C
temperature difference). The results reported 4%-25%
energy consumption reduction as compared to static
temperature setpoints at the low values of the preferred
temperature range. During the field test, the control
strategy successfully reduced occupant interventions in
adjusting room temperatures to fit their thermal
preferences. The interventions were reduced to a
maximum of one daily occurrence per month from four
to nine daily occurrences per month.
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Fig 2. Thermal distributions of the case study rooms during the filed test
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4, LESSONS LEARNT
The proposed occupancy-based and thermal-

preference-based demand-driven controls, as explored
in the case study, demonstrate energy savings potentials
and indicate improvements regarding the comfort of the
office occupants. The proposed framework features the
following advantageous traits:

e Cost consideration: To avoid costly implementation
and maintenance for sensing infrastructure, the
framework operates using standard building sensors
and HMIs, which usually exist in conditioned
buildings or can be installed without high costs.

e Features and datasets: According to multiple
features selected from the sensor signals, the case
study provides valuable views on structuring
datasets for modeling occupant behavior: first
defining the concepts of global and local training
datasets, preference-related and noise datasets.

e Online learning: The proposed framework embeds
learning capacities to allow HVAC systems to
respond to different room conditions with fewer
human interventions during the engineering and
implementation phases. Meanwhile, the data-driven
learning processes can re-learn from new data
captured from local rooms to adapt to changes of
occupants’ demand during standard operation.

e Scalability: In a broader sense, the proposed
framework can be extended to other building
systems to realize demand-driven or occupant-
centric design and operation.

In addition to the above discussion, this study finds
the following aspects also important to discuss advanced
control strategies such as the ones proposed.

Deployment and upgradability: More sophisticated
algorithms are hard to deploy into local controllers due
to limits of onboard computing and memory resources
[1]. In order to embed demand-driven approaches and
control a much larger number of rooms adapting to
complex applications, advanced algorithms in the high-
level control layer could not only be coded in a
computer-based workstation, but could also be
embedded in the BMS directly as application functions or
be deployed into cloud computing services. Such
deployment can achieve an agile upgrade of functions in
the high-level control without additional development
on hardware and software of local controllers.

Data communication: The reliability of data
communications between sensing infrastructure,
controls, and actuators is critical for daily operation. In
this study, a primary fault detection such as for lost

connection has been coded into the control strategies to
generate alarms and recover the connection. For large-
scale applications, improving the communication
reliability of the sensing, actuators, and communication
technologies themselves is also relevant.

Short presence: An additional 2%-6% energy saving
could be achieved by keeping setback setpoints when
short presence occurs in the periods of the setback mode
[2]. Future research on distinguishing short presence
from all types of presence that occur in buildings will
offer the possibility to bridge this saving gap.

Shared space: For spaces with larger numbers of
occupants (e.g. an open office), further considerations of
what proportion of the space is occupied, occupants’
conflicting interests regarding the indoor climate, and a
suitable spatial resolution of HVAC supply are required
and critical for such strategies.

Privacy: In this study, all occupant-related and
corresponding climate data was not tagged to individual
occupants in order to ensure appropriate privacy. For
research on and application of occupant-centric
approaches, privacy need to be considered from design
to operation.
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