
Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

A longitudinal study of thermostat behaviors based on climate, seasonal, and
energy price considerations using connected thermostat data

Brent Huchuka,∗, William O'Brienb, Scott Sannera

a Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
bDepartment of Civil and Environmental Engineering, Carleton University, Ottawa, Canada

A R T I C L E I N F O

Keywords:
Connected thermostat
Residential
User preferences
User behavior

A B S T R A C T

While previous studies have attempted to understand and predict users' behaviors and preferences for residential
thermostats, they have been restricted by a lack of available data. Because of practical constraints, researchers
previously relied on short observation periods, small sample groups, and/or participants close in physical lo-
cation. The advent of the connected thermostat and its inherent centralized data collection now allows for such
studies to be performed without the onus of data collection. Specifically, in this article we focus on the ‘Donate
Your Data’ dataset made available by the thermostat manufacturer ecobee Inc. The dataset, consisting of more
than 10,000 connected thermostats installed across North America and spanning multiple years, was used to
investigate how users' comfort decisions are affected by exterior stimuli such as climate regions, seasonal pat-
terns, and utility rates. Our analysis indicates that seasonality and climate region affected user preferences while
utility rates did not contribute to meaningful variation in behavior. Further investigation explored if behavioral
user types could be identified based on variation in occupied and unoccupied setpoints, thermostat overrides
with holds, or heating and cooling setpoint selection. We did not find distinct user clusters to be identifiable
based on any of the metrics; rather, occupant behavior in the population appeared to span more of a continuum
across each metric.

1. Introduction

In the United States, 47% of the energy used by the residential
sector is consumed by space conditioning [1]. An estimated 85% of
American households use a thermostat to control their heating, while
64% use a thermostat for controlling cooling [2]. Given both their
prevalence in homes and the magnitude of residential energy, ther-
mostats managed almost 8% of the United States' energy use in 2015
[3]. Hence it is important to study thermostat usage to understand the
behaviors which lead to such energy consumption.

Thermostats have evolved in both functionality and user expecta-
tion for their role in the home [4]. The most basic in function, a manual
thermostat, has a single or sometimes two static setpoints (i.e., one for
heating and one for cooling). When the temperature exceeds an upper
setpoint or falls below a lower setpoint, the appropriate system is en-
abled until the space returns to the acceptable temperature range. Ac-
tive setpoint management is achieved only by an eager and willing user.
The first programmable thermostats were released over a century ago,
and in general functionality remain unchanged [4]. They allow users to
include setbacks (or set-ups) in their schedule based on the time of day.

The active setpoint management is performed by the device, once
programmed, allowing users to save energy without sacrificing comfort
when at home. Theoretically, setbacks on a thermostat were shown to
reduce natural gas consumption by up to 25% [5]. However, often
schedules are not properly set and energy usage does not achieve the-
oretical savings [6]. In a survey of thermostat users, Pritoni et al. [7]
found that 40% of users were not using the programmable features.
While other energy efficient products achieve savings solely thorough
installation (e.g., a furnace or air conditioner), programmable ther-
mostats require that users properly configure the device to maximize
energy efficiency and savings. The discovery that users were not
properly using a programmable thermostat resulted in the Environ-
mental Protection Agency (EPA) suspending the Energy Star program
for programmable thermostats [8].

The most recent generation of thermostat devices are referred to as
connected thermostats. These devices, which are connected to the
Internet, promise to deliver accessible control through web, mobile or
even voice platforms, and additional energy savings because of features
like occupancy detection or adaptation to occupant schedules. Inherent
in all of these capabilities is their ability to measure, transmit, and
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receive data from the time of installation in the customer's home. This
gives users, companies, and researchers alike the ability to understand
how actual thermostat operation is occurring for the subset of the
general population who have installed a connected thermostat. As of
2015, 40% of the 10 million thermostats purchased in the United States
each year were of the connected variety [9].

Considering the diverse functionality, historical difficulty in trans-
lating theoretical savings to actual savings and broad energy impacts,
research into thermostat operation has remained disproportionately
limited. Historically, efforts to understand user behavior have relied on
small samples (e.g., 10s or 100s) in a localized geographic area [10–13]
or on the correct and accurate reporting by the users at one time
[1,2,7,14]. Both methods have potential caveats. The small, and often
local, samples mean generalizations are difficult to make, while self-
reporting can be inherently biased and does not account for adaptations
in behavior over time [15]. As found by Pritoni et al. [7], incon-
sistencies were unavoidable in the data when users were asked to self-
report on various questions regarding their thermostat operation even
when provided assistance and guidance during the questionnaire. Si-
milarly, Vine and Barnes [14] found that users' reported and actual
temperatures could be off by an average of 2 °F (1.1 °C) but that dis-
crepancy could be more than 5 °F (2.8 °C). The results from these self-
reported studies are limited in scope because the findings are restricted
only to the responses received to questions posed to the participants.
They also lack generality because the sample is only for an instant in
time for the user.

This paper puts forth an investigation into how a new data source,
the interval data (i.e., time series data at five-minute intervals) col-
lected from connected thermostats, could be used as a novel method for
understanding occupants' thermostat behavior. In particular, the data
source is utilized to solve issues that have limited many investigations
in the past: (i) a lack of prolonged study length, (ii) minimal study
population size, and (iii) difficulties in data collection. That said, our
data is restricted to the subset of the population with connected ther-
mostats who represent a distinct (often early technology adopters) sub-
demographic of residential thermostat users. Even with potential
sample bias, the data source still provides valuable information in un-
derstanding how these users are operating their thermostats given the
various differences that exist at the individual level. To explore these
differences, we ask the following specific questions:

Q1 How does a thermostat user's behavior change as a function of:
seasonal variations, climatic adaptations, and utility pricing in the
region?
Q2 Are there discernible user types in thermostat operation, speci-
fically as it relates to: engaging in energy savings strategies between
occupied and unoccupied periods (i.e., setbacks/set-ups), frequency
of holds, and heating and cooling setpoint selection?

The remainder of the article is structured as follows. Section 2 re-
views relevant previous studies and findings. Section 3 provides an
overview of the ‘Donate Your Data’ dataset which consists of multi-year
interval data for over 10,000 thermostats across North America. Section
4 summarizes and discusses results associated with Q1 and Q2. Section
5 presents conclusions of the investigation.

2. Background

As buildings become more energy efficient to operate because of
tighter building envelopes and higher efficiency equipment, the effects
of user behavior have become more significant [16]. While much has
been explored in the domain of commercial buildings and their op-
eration, residential markets have seen less analysis. Occupants of re-
sidential buildings often have increased control in how their environ-
ments are being managed because they have access to the thermostat.
Occupants also have an increased ability to adapt to the environment by

taking actions such as changing their clothing level or consuming a hot
or cold beverage. In a residential setting, activities are more varied in
comparison to the often sedentary activities engaged in at commercial
buildings. As a result, residential studies can show diverse behavior and
energy results. In Gram-Hanssen's [17] study of identically-constructed
homes, the heating energy of the highest energy use home was three
and a half times larger than the home with the lowest energy con-
sumption. This variation is the result of the homeowner's behavior and
habits; including choice of temperature setpoints. Through simulation it
has been shown that individual behaviors and actions exceed the im-
pact to changes in the building envelope such as upgrades to glazing or
thermal insulation [18]. The variation, not just in expected user beha-
vior but also in regions (and by extension climates) of study has been
shown to significantly change the energy usage of homes [19]. It has
been identified that users manage their thermostat settings as a multi-
objective optimization problem, with over 25 potential influences being
found [20]. Many of the influences deal with elements of comfort (e.g.,
thermal sensation, temperature control) while others with economics
(e.g., heating price, family income).

2.1. Thermal comfort

Thermal comfort is ultimately a state of mind achieved by the
subjective evaluation of a number of parameters including: metabolic
rate, clothing insulation, air temperature, radiant temperature, air
speed, and humidity [21]. The ability for users to adapt to the en-
vironment or make sacrifices for energy savings can redefine what is
comfortable [22]. Occupants in a residential setting have been observed
adapting their thermal behaviors based on local climate, expectation,
and available control [23,24]. The American Society of Heating, Re-
frigerating and Air-Conditioning Engineers (ASHRAE) outlines the
minimum requirements for acceptable thermal environments. ASHRAE
Standard 55 (ASHRAE-55) [21] methods are allowed to be applied on
all residential and commercial occupied spaces. The general model links
comfort temperature with variables including metabolic rates of users,
clothing adaptations, and operative temperatures (which accounts for
both radiation and convection in the space). The prescribed method is
based on the heat-balance methods determined by Fanger [25]. Fan-
ger's method calculates the Predicted Mean Vote (PMV) which is a
prediction of the mean value of thermal sensation as reported by a large
group of users. The index ranges from−3 to +3 and maps to categories
described as ‘cold’, ‘cool’, ‘slightly cool’, ‘neutral’, ‘slightly warm’,
‘warm’, and ‘hot’. ASHRAE-55 suggests keeping the PMV value within
the range of± 0.5. Unfortunately, thermal sensation and corresponding
PMV do not necessarily translate well in practice to residential appli-
cations [23]. The PMV method is limited because it only accounts for
physical changes by the user as they relate to comfort. For example, a
user could experience different sensation based on removing a sweater
or engaging in physical activity. Thermal comfort can also be affected
by psychological acclimatization to conditions, habituation and/or ex-
pectation [24]. These non-physical factors to thermal sensation remain
unaccounted for by the model.

ASHRAE-55 has a separate and alternative model to the PMV model
for buildings where there is no mechanical cooling, and user comfort is
more dependent on the adaptation of user. It is referred to as the
adaptive comfort model. Fig. 1 graphically shows the prescribed
boundaries outlined in the adaptive comfort model. The model linearly
relates the acceptable operative temperature inside with the prevailing
mean outdoor temperature (which must be between 10 °C and 33.5 °C).
The prevailing mean outdoor temperature is the arithmetic mean of
daily average temperature in the proceeding seven to 30 days. The
prevailing mean can also have an additional weighting applied with a
decay curve in which more weight is given to recent days and less to
days further away. The standard has a set of boundaries at 80% and
90% acceptability limits (both indicated on Fig. 1) and suggests that
users should be kept between the 80% acceptability limits. While the
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adaptive model addresses psychological effects not covered by the PMV
model, it applies only to a subset of residential users (i.e., only those
who have no cooling equipment installed) and only during periods of
time where those occupants are not using their heating system. Similar
adaptive models have been extended to additional seasons of the year in
the Netherlands, and varied to include a greater range of building types
[26].

In addition to outdoor temperature affecting what is comfortable for
the user, observations have been made that user variation between
climate regions were larger than what could be explained by differing
clothing levels [27]. Past exposure and experience have been found to
change individuals perceived levels of thermal comfort [24,28]. In-
vestigations have shown that preferred indoor temperature is depen-
dent on the outdoor temperature [10] and found users would consider
themselves warmer in winter than they would be in summer even
though the measured room temperatures were lower [29]. In general,
the lack of residential data available in previous studies means the
understanding of comfort and occupants may need revision when large
datasets become available [30].

2.1.1. Cost-based considerations on thermal preferences
How a user operates their home thermally has been investigated as a

function of the costs that are being incurred to keep it at that level of
comfort or utility. Pimbert and Fishman [10] observed that occupants
in the United Kingdom were insensitive to moderate changes in heating
costs as it related to their preferred evening living room temperatures.
Meanwhile, research into multi-unit residential buildings (MURBs)
found those who were aware of the costs they were incurring through
direct metering tended to keep their temperatures in more conservative
ranges than those who were not [13,31,32]. While costs and their
transparency to users were linked to setpoint selection, the fact that
MURBs often cater to a specific socio-economic subset of the population
cannot be ignored. In a national study of 1000 homes in the U.K., in-
come was identified as a strong indicator of room temperature, with
lower income homes found to be 3 °C lower on average in the heating
season [33]. Kelly et al. [34] also found income was an indicator of
setpoint selection.

2.2. User types

There can be large advantages to researchers when behaviors fall
easily into identified user types. Studies show that a user's behavior will
remain consistent even when presented with a new control ability. For
example, a user who did not manually setback the temperature with a
manual thermostat is not likely to then start using a setback when given
a programmable thermostat [6,35]. When looking at entire energy
usage for homes in the U.K., eight different customer archetypes based
on energy usage were identified as: ‘pioneer greens’, ‘follower greens’,
‘concerned greens’, ‘home stayers’, ‘unconscientious wasters’, ‘regular

wasters’, ‘daytime wasters’, and ‘disengaged wasters’ [36]. The different
user types were based on the combination of the energy efficiency le-
vels of the properties, the ‘greenness’ of the occupants (i.e., their gen-
eral energy efficiency), and the amount of occupancy during the day-
time. Santin [35] looked at developing user types based on housing
characteristics and energy usage patterns; identifying five different
classes of user. The user types were identified as: ‘spenders’, ‘affluent-
cool’, ‘conscious-warm’, ‘comfort’, and ‘convenience-cool’. The models
of Zhang et al. [36] and Santin [35] only shared the characteristic of
how energy-efficient users appeared. Ren et al. [37] investigated the
temperatures and energy usage of affordable housing units and found
users could be clustered (by unsupervised methods) into six different
categories. The clusters were based on the average and the standard
deviation of room temperature for days. The majority of the apartments
were found to fall in only three of the six clusters. While many studies
have said the behaviors of occupants remain discrete or grouped in
nature, O'Brien et al. [38] found that occupants are more accurately
modeled as a continuum in preference selection instead of as discrete
types.

3. Data

3.1. Data description

The data used for this analysis came from the ‘Donate Your Data’
program administered by ecobee Inc., a connected thermostat manu-
facturer. The data is ‘donated’ by users who agreed to have their
anonymized data released to various research partners. These research
partners (e.g., academic labs, non-government organizations, research
institutes) have agreed to use this dataset for non-commercial causes
and that the results from the studies ultimately enter the public domain.
The data consists of five-minute interval data that is measured by the
thermostat and any connected remote sensors the users have placed in
the homes. An example of the ecobee3 and a remote sensor are seen in
Fig. 2. The thermostat is installed on the wall and connects to the
home's heating, ventilation, and air conditioning (HVAC) equipment
through the same wires a standard thermostat. Exact placement is de-
pendent on where these wires are installed and is unique to each home.
The remote sensors are independent, wireless, battery operated devices
which measure temperature and occupancy and send information back
to the thermostat over a radio channel. The sensors are recommended
to be placed within 13.7 m of the thermostat and at a height of 1.5 m.
Ideally they should be kept away from direct heating and cooling
sources [39]. Table 1 shows the various data values contained in the in
the interval data (left column) in addition to a small description (middle
column) and associated units where applicable (right column).

The dataset contains data from the thermostat first connecting (or
from January 2015 if actual online status occurred before that date)
until the release of data in April 2017. Overall, this data contains over

Fig. 1. Acceptability limits for the adaptive comfort model. Figure recreated from ASHRAE-55 [21].
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three million days of data. The dataset currently possesses 10,250
thermostats and 7,946 thermostat users. This disparity is a result of
many users having multiple thermostats in their home, multiple prop-
erties, or users who have upgraded their thermostats from one ecobee
product to another. For users with multiple thermostats, the most re-
cent thermostat was selected based on the interval data. This reduced
the number of available thermostats in the sample to be the same as the
number of users. Currently, four generations of ecobee thermostats exist
in the data, with two of the four able to connect to up to 32 remote
sensors and/or having occupancy detection. In addition to the interval
data, the dataset includes voluntary reporting of user-defined metadata
including housing characteristics and equipment configuration. While
provincial or state information is not available for all thermostats
(given that it is user-inputted value), less than 2% of users were rejected
based on that omission.

In Fig. 3 we show the thermostat location distributions across North
America based on Canadian province and U.S. state. The Canadian
territories (i.e., the Northwest Territories, the Yukon, and Nunavut)
were removed for space considerations but none had any thermostats. It
is seen that the majority of continental North America is covered by the
data of at least one thermostat. The largest numbers of thermostats are
found in the Canadian province of Ontario, and the states of Texas and
California; which corresponds to the most heavily populated province
and states in Canada and the U.S.

In Fig. 4, the number of days of available data per thermostat as
separated by thermostat model is shown. Older generation devices, the
Smart and SmartSi, are predominately found as devices with over 800
days of data. This makes sense considering they have been operational
the longest and are no longer manufactured devices. The majority of

devices in the dataset are the ecobee3. This generation of device has
both remote sensing capabilities and occupancy detection. Two relative
peaks can be seen in the data near 120 and 480 days. These are from the
yearly relative increase in connections from holiday purchases. The
dashed line indicates a cut off of one year (365 days). If a thermostat
contained less than a year of data it was removed from climate or
seasonal analysis. These analyses had a reduced sample of under 2,500
thermostats.

In Fig. 5, we show an example of the temperature readings for a
single thermostat. The data shown is for a full year of operation. Fig. 5a
(top) shows the outdoor temperature, which is gathered by a local
weather station, and is provided by ecobee to the user. Fig. 5b (middle)
contains the control temperature, which is the temperature value being
used to control the system and compared to the programmed setpoints.
Fig. 5c (bottom) shows the temperature readings of all the remote
sensors connected to the thermostat and the temperature reading of the
thermostat itself. Fig. 5c illustrates the variation in temperature be-
tween the thermostat and remote sensors. The remote sensors are de-
signed to measure temperature at various points within a home. These
sensor measurements are weighted either by the programmed ther-
mostat schedule or by occupancy in the home. The choice of config-
uration is made by the user. In the simplest configuration, all available
data points are weighted equally from across the home and used as the
control temperature (Fig. 5b). It can be seen when comparing the
control temperatures (Fig. 5b) and sensor readings (Fig. 5c) how the
control temperature can be very similar to one of the sensor readings
but generally appears as a blend of multiple sensors. There is also
evidence of missing data (e.g., before May 2015) which can happen
when power outages occur or if the thermostat loses connection with
the user's wireless internet network. The median value of missing in-
terval data per thermostat is 15%.

3.2. Climate region definitions

To be able to better group regions by similar climates, the available
dataset was mapped to the Building America Climate Zones [40]. The
Building America Climate Zones are based on the average heating and
cooling degree days of the region along with the average annual pre-
cipitation [40]. The similar zones of Cold and Very-Cold along with the
zones Mixed-Dry and Hot-Dry were grouped together further (shown in
the left column of Table 2) to reduce the number of unique zones. A
similar methodology is applied by the Energy Star metric for connected
thermostats [41]. The Building America Climate Zones span over
multiple ASHRAE climate zones. For comparison, the associated
ASHRAE zones are included in the middle column of Table 2. Of the less
than 2,500 thermostats eligible for the analysis, over 350 thermostats
(approximately 14%) could not be properly mapped to a climate zone
and would include thermostats located in Canada. The number of
thermostats mapped to each climate zone is in the right column of
Table 2. The Cold/Very Cold zone is the largest region by population of
thermostats.

Fig. 2. ecobee3 (left) and a remote sensor (right). The remote sensor is able to
be placed in other rooms in the house, while the thermostat is mounted to the
user's wall.

Table 1
Description of the interval data collected.

Data Point Description Units

temperature measurement from remote sensor(s) and thermostat device (± 1.0 °F) °F
relative humidity measurement from thermostat device %
outdoor temperature measurement taken from local weather station °F
setpoints heating and cooling bounds °F
equipment runtime measured duration by thermostat device seconds
motion state of occupancy detection based on PIR sensor reading boolean
schedule user-defined comfort period (e.g., home, away, sleep, etc.) NA
events items override the set schedule NA

(e.g., holds, vacations, demand response events, etc.)
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3.3. Season definitions

When considering the effects of seasonality, it is conducive to define
core heating and core cooling seasons in comparison to the shoulder
seasons (i.e., the transitional periods between the two core seasons). As

opposed to defining seasons by fixed date calendar-based changeovers
or calculations of heating degree days/cooling degree days, the basis
was made using the observed runtime of the HVAC equipment con-
trolled by the thermostat on a given day. On a single day in either of the
core seasons, it was assumed a user's equipment would run heating or

[0 to 25)

[25 to 39)

[39 to 81)

[81 to 162) 

[162 to 231)

[231 to 331)

[331 to 983]

Fig. 3. Number of thermostats in the continental U.S. states and Canadian provinces. The Yukon, Northwest Territories, and Nunavut were removed for space
considerations.

Fig. 4. Number of days of data per thermostat separated by thermostat model. The line indicates 365 days which was used a threshold in climate and seasonal
analyses.

Fig. 5. Sample of the (a) outdoor temperature data, (b) control temperatures, and (c) sensor temperatures for a single thermostat found in the ‘Donate Your Data’
dataset.
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cooling equipment but not the other. For example, a day that has heat
runtime greater than zero minutes and no cooling runtime would be
considered core heating. A shoulder season day was considered any day
that did not qualify as either core heating or core cooling. During
shoulder seasons, users would also be considered to be less likely to run
their equipment and more capable of operating their building as a
naturally-conditioned space taking actions such as opening the win-
dows.

3.4. Utility rate information

State-level residential prices for natural gas and electricity were
collected from the U.S. Energy Information Administration (EIA)
[42,43]. Average yearly data was collected for 2015 and 2016 and
averaged over the two years for each state. Thermostats were then
matched by their state information to these rates. Similar rate in-
formation was not incorporated for Canadian provinces. While cooling
is achieved using electricity, heating could be provided by multiple fuel
sources. Natural gas and electricity account for 83% of the heating
source for the U.S. [2]. with other fuels such as kerosene and distillate
fuel oil making up the balance. Based on the metadata, users with a heat
pump were assumed to use electricity as their heating source, else
natural gas was assumed. The metadata does not provide additional
information on equipment configurations such as distinguishing be-
tween a furnace and a boiler.

4. Results and analysis

The investigation into the first question (Q1), regarding what fac-
tors could be contributing to how users are operating their thermostats
is explored in Sections 4.1, 4.2, and 4.3. Meanwhile, the investigation
into the second question (Q2), which focused on potential user types
based on behavior is in Section 4.4.

4.1. Seasonal variation in thermostat behavior

As temperatures and seasons change, thermal preferences are ex-
pected to change because of factors including changes to clothing level
[21]. Hence, the temperatures selected by users on their thermostats are
expected to change in order to maintain a similar level of temperature
acceptability. For each thermostat which met or exceeded the criteria
for minimum number of days online, the daily average control tem-
perature was calculated. Average outdoor temperature was calculated
similarly for each day. To determine prevailing outdoor temperature,
the previous 30 days' outdoor temperature was averaged with equal
weighting. Each day was further identified as being in the cooling,
heating, or shoulder season as described in Section 3.3.

In Fig. 6, we show the scatter plot of average indoor control tem-
perature versus prevailing outdoor temperature for all heating and
cooling days. The 7 °C temperature band for the 80% comfort accept-
ability limits from the adaptive comfort model are indicated. The
cooling season's prevailing outdoor temperature limit matches well
with that of the adaptive comfort model's limits, while the heating

season overlaps only in the region from 10 °C to 20 °C. The heating
season's prevailing outdoor temperature is found to extend to a much
colder temperature (lower than −10 °C) than the adaptive model was
intended. It should not be expected that users accept or continually
allow their indoor environment to get colder. A linear regression was
performed on the heating and cooling season data independently. The
R2 value for the heating season is 0.089 and 0.159 for the cooling
season. The slope for the heating season was found to be 0.075 and the
cooling slope was calculated as 0.140. Neither the heating or cooling
season relation is found to agree with the slope value of the adaptive
model; which is prescribed at a value of 0.31 [21]. This difference in
relations between indoor temperature and outdoor temperature alludes
to two separate behavior strategies that need to be considered by a
model. As an aggregated sample, the switch between the two models
would appear at the overlap of the two seasons, (approximately at a
prevailing outdoor temperature of 15 °C). This value is similar to the
base temperature of various heating and cooling degree day methods
[44]. Fig. 6 contains outliers – particularly during the heating seasons –
where some homes reached temperatures as low as 12–13 °C. These are
likely a result of users who reside at secondary properties or who take
extended vacations. In these cases, heating is utilized more as a safety
barrier to prevent damage at the property than for occupant comfort.

Fig. 7 shows the similar indoor-outdoor temperature relation but for
the days considered in the shoulder season. Once again, the 80% ac-
ceptability bounds from ASHRAE-55 [21] are included. The linear re-
gression on the shoulder season data calculated the slope to be 0.222
with an R2 of 0.267 – the closest to the adaptive models of the heating,
cooling and shoulder seasons used for comparison. Similar to the
heating season, the prevailing outdoor temperature region extends
more than 10 °C lower than the adaptive model.

Fig. 8 presents the heat maps for (a) heating, (b) cooling, and (c)
shoulder seasons for average daily indoor temperature and prevailing
outdoor temperature along with the 80% acceptability bounds. Similar
to Figs. 6 and 7 in content, the heat maps better illustrate the amount of
data present in the previous scatter plots. In all three sub-figures, a
density of data is seen to be contained by the prescribed acceptability

Table 2
Number of thermostats identified in each Building America Climate Zone along
with the corresponding ASHRAE Climate Zones.

Building America Climate
Zone

ASHRAE Climate Zone Number of Thermostats

Cold/Very-Cold 5/6/7 960
Hot-Humid 2A/3A 276
Marine 3C/4C 179
Mixed-Dry/Hot-Dry 3B/4B 219
Mixed-Humid 3A/4A 471
Subarctic 8 0

Fig. 6. Average daily indoor control temperatures based on the prevailing
outdoor temperature for both heating (red) and cooling (blue) season days. The
80% comfort acceptability limits from ASHRAE-55's [21] adaptive comfort
model are included over its prescribed range of temperatures. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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bounds of the adaptive comfort model but the cooling (Fig. 8b) and
shoulder (Fig. 8c) are much better captured.

Based on the analyses, the adaptive model from ASHRAE-55 [21]
holds for a large fraction of residential operations in the shoulder
season. Of note, the upper bound on prevailing outdoor temperature
seen here (approximately 30–35 °C) is very similar to the bounds on the
model in the adaptive model (33.5 °C) while the lower bounds are ex-
ceeded. Many observations are found at a lower prevailing outdoor
temperature or an associated lower indoor temperature than the model
would predict. The defined temperature bounds prescribed by the
adaptive model do not seem to be violated by the application into the
cooling seasons but does not capture well the heating season's behavior.
In addition to the temperature regions, the slopes for the seasons are
considerably less. The heating slope is particularly shallow, and almost
flat. This is similar to the results observed by Pimbert and Fishman [10]
who found users reach a limit where they will go no lower in their room
temperature as outdoor temperature changes and demand a certain
minimum temperature. The low R2 values of these regressions indicate
that the outdoor temperature is not a strong indicator of thermostat
setpoint selection for the heating and cooling seasons. However, we
must acknowledge that setpoint temperatures do not represent the
complete optimal comfort conditions outlined by ASHRAE-55's [21]
adaptive comfort model. Those are influenced by variables we are un-
able to capture such as radiant temperatures or airspeed within the
space.

4.2. Regional variation in thermostat preferences

We were able to map a subset of users to the six Building America
Climate Zones identified in the left column of Table 2. For each ther-
mostat, each day labeled as heating or cooling season was collected.
Days identified as part of the shoulder season were not considered. For
each of the heating season days, the median heating setpoint for that
day was calculated. For each of the cooling season days, the median
cooling setpoint was used. The decision to use the median setpoint was
based on the setpoint distribution for an individual thermostat. In
Fig. 9, the heating and cooling setpoint distributions for 20 thermostats
are shown. Each thermostat is its own split violin with heating setpoints
on the left and cooling setpoints on the right. The 20 thermostats were
randomly selected from a group of thermostats who were active for at
least a year and half. The heating (and cooling) setpoints for each in-
dividual thermostat are not normally distributed and instead occur at a
small number of distinct values. For example, Thermostat 2 appears to
have two main setpoints in heating (left) and three in cooling (right).
This setpoint behavior reflects that only a few schedule periods are set
(i.e., thermostats may only be set at ‘home’ and ‘away’ periods) and/or
that they are not actively redefining the setpoints of the scheduled
periods over the observation window.

The distributions of both heating and cooling setpoints based on
climate zone are shown in Fig. 10. Each climate zone is its own violin
plot, with each violin being split. The left distribution of each violin is
for heating setpoints and the right the cooling setpoints. For each cli-
mate zone and both setpoints, lines denoting the 25th, 50th and 75th

percentiles are included. The Mixed-Dry/Hot-Dry has the highest
median setpoint for cooling of the climate zones, while Mixed-Humid
has the lowest. The Marine climate zone has the lowest median heating
setpoint. The Marine region also has the largest comfort band (differ-
ence between heating and cooling medians) indicating a greater range
of temperature adaptability than other climate zones. The individuals in
the Cold/Very-Cold region seem to tolerate a lower heating setpoint
than many of the other regions.

To understand the independence of the populations, and if ob-
servations could be considered statistically significant, a t-test was
performed on the combination of heating and cooling setpoint. Table 3
shows the p-values for the testing on heating setpoints. Table 4 shows
the p-values for the testing on cooling setpoint distribution. In com-
parison of the Hot-Humid and Mixed-Dry/Hot-Dry regions (two rela-
tively similar regions) there is a preference for higher cooling setpoints
in the less humid (Mixed-Dry/Hot-Dry) of the two regions, presumably
because of humidity's effect on comfort. The p-value for heating
(Table 3) and cooling (Table 4) between these two regions are both
below the 0.05 threshold for significance, indicating the distributions
are statistically different. For heating (Table 3), only the t-test for

Fig. 7. Average daily indoor control temperatures based on the prevailing
outdoor temperature for shoulder season days. The 80% acceptability limits
from ASHRAE-55's [21] adaptive comfort model are included over its pre-
scribed range of temperatures.

Fig. 8. Heat maps of average daily indoor control temperatures based on the prevailing outdoor temperature for (a) heating, (b) cooling, and (c) shoulder season
days. The 80% comfort acceptability lines from ASHRAE-55's [21] adaptive comfort model are included over its prescribed range of temperatures.
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Mixed-Humid with Mixed-Dry/Hot-Dry, and Cold/Very-Cold with
Marine did not meet the p-value criteria of 0.05. Meanwhile, for cooling
(Table 4) only the results for Cold/Very-Cold with Mixed-Humid, and
Marine with Hot-Humid did not exceed the threshold.

Previous research has indicated that people may adapt thermally to

long-term exposure to different climates [24,28]. The distributions
shown in Fig. 10 show this to be the case for connected thermostat
users. For example, in extreme climate zones, such as Cold/Very-Cold,
setpoint preferences shows individuals who have become acclimatized
to, or prepared for, colder temperatures. As such, setpoint preferences

Fig. 9. Distributions in heating and cooling setpoints for 20 randomly selected thermostats.

Fig. 10. Setpoint temperature distributions in the various Building America Climate zones. For each violin, the 25th, 50th and 75th percentiles are indicated.

Table 3
P-value results from t-tests comparing the heating setpoint distributions. P-values deemed not significant based on a threshold of 0.05 are in bold.

Mixed-Humid Cold/Very-Cold Hot-Humid Marine Mixed-Dry/Hot-Dry

Mixed-Humid 1 0.0081 0.0001 0.021 0.17
Cold/Very-Cold 0.0081 1 2.3e-09 0.41 0.00098
Hot-Humid 0.0001 2.3e-09 1 7.5e-07 0.035
Marine 0.021 0.41 7.5e-07 1 0.0024
Mixed-Dry/Hot-Dry 0.17 0.00098 0.035 0.0024 1

Table 4
P-value results from t-tests comparing the heating setpoint distributions. P-values deemed not significant based on a threshold of 0.05 are in bold.

Mixed-Humid Cold/Very-Cold Hot-Humid Marine Mixed-Dry/Hot-Dry

Mixed-Humid 1 0.32 0.00058 4.7e-05 6.8e-20
Cold/Very-Cold 0.32 1 0.0031 0.00019 2.2e-19
Hot-Humid 0.00058 0.0031 1 0.061 6e-10
Marine 4.7e-05 0.00019 0.061 1 0.0042
Mixed-Dry/Hot-Dry 6.8e-20 2.2e-19 6e-10 0.0042 1
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for connected thermostat users should be considered as a function of
their climactic region.

4.3. Cost considerations effecting thermal preferences

While energy reducing behaviors generally coincide with a reduction
in spending on space conditioning by the household, we investigated a
more direct relation between the costs associated with heating and
cooling. For cooling it was assumed all systems were electric. For heating,
if the thermostat was listed as having a heat pump by the provided me-
tadata it was assumed electricity was used for heating; otherwise it was
assumed that natural gas was the main heating source. Electricity and gas
prices were taken from the U.S. Energy Information Administration
[42,43]. The cooling setpoint temperatures were taken from cooling
season days and heating setpoint temperatures from heating season days.
Fig. 11a shows the median cooling setpoint temperature as a function of
the state's average electricity price. A linear regression was conducted and
the line plotted. No statistically significant relation was found. Fig. 11b
shows the median heating setpoints and average natural gas prices for
homes without heat pumps. The regression results here show an in-
creasing slope which would be counter to a cost aversion strategy as
heating setpoints are increasing with price, however the R2 value at 0.003

is too low to consider this a meaningful result. Finally, in Fig. 11c we
show the median heating setpoint and the average electricity prices for
homes with heat pumps. The regression trend is of a negative slope, in-
dicating higher costs and lower setpoints are related. This regression had
an R2 value of 0.02, and similar to Fig. 11b, is too low to be considered
significant.

There is in general a lack of variation in users' preferred tempera-
tures as a function the utility prices; a finding counter to other previous
studies. Unlike previous studies, we are unable to say for certain if in-
dividuals were being made aware of their prices in an approach that
would have actively encouraged conservation. A potentially large effect
could be the self-selection bias that exists in participant groups in these
past studies. For example, previous studies have relied on MURBs which
often are occupied by a less affluent socio-economic demographic.
Meanwhile, connected thermostats, given their relatively high price
cater often to a more affluent demographic and who give more priority
to comfort than cost savings. However, as the penetration of connected
thermostat devices increases in market, particularly though revisions to
building codes and through utility programs and partnerships, the im-
plicit solution bias in the sample should improve. Even with the po-
tential bias in the data, the data remains an invaluable resource and
should yield further insights with additional investigation.

Fig. 11. Heat maps for indoor setpoint temperature for (a) the cooling season and electricity prices, (b) heating season and gas prices for homes with a heating system
other than heat pumps, and (c) heating season and electricity prices for homes with heat pumps. Regression lines for all three relations are included.

Fig. 12. Median control temperatures for each thermostat in occupied and unoccupied periods in each of the (a) heating, (b) cooling, and (c) shoulder seasons. The
identity line is included on each subfigure.
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4.4. Identification of user types based on how users operate their thermostat

How a user operates a thermostat can be categorized by a number of
different tendencies in their actions. Given actions in how users treated
occupied and unoccupied periods, allowed schedules to run, and gen-
erally selected setpoint temperatures, distinct user types such as energy
efficient/aware occupants were attempted to be identified. Initially it
was explored how users operate a thermostat differently between their
‘occupied’ and ‘unoccupied’ periods. When analyzing the data from a
single thermostat, if an occupancy state was detected by any available
motion sensor, the period for an hour before and hour after was con-
sidered occupied. All periods from midnight until 6am were considered
occupied. It was assumed that people were home but asleep and not
trigging occupancy sensors. The median control temperature for both
occupied and unoccupied times was calculated for all the heating,
cooling, and shoulder seasons for each user. Fig. 12 shows the median
temperature for the occupied and unoccupied periods for (a) heating,
(b) cooling, and (c) shoulder seasons. A data point on this line would
indicate no change between the occupied and unoccupied periods in
how the thermostats were being set to keep the temperature. In Fig. 12a
the data is found beneath the unity line meaning users do allow a lower
temperature when not home. Fig. 12b has the data above the unity line
which is the result of temperatures increase when the home is not oc-
cupied. Both of these are consistent with setbacks (and set-ups) being
applied for the unoccupied periods. Fig. 12c shows that during the
shoulder season the unoccupied and occupied temperatures remained
similar based on their centering on the unity line. Since shoulder sea-
sons may have both or neither of cooling and heating requirements the
temperature can drift both above and below the setpoint for a user over
the sample history.

Fig. 12 indicates setbacks and set-up strategies are generally being
applied by the population of the thermostats but does not indicate how
users are achieving these results. For example, some users rely on
keeping to a schedule while some users rely on prolonged holds that
they adjust. For each thermostat, the fraction of time that they had a
hold applied and overriding their schedule was calculated. A hold is a
manual and deliberate override of a scheduled program on the ther-
mostat. Depending on how the user has configured the thermostat the
duration is variable with some people electing for the hold to be in
place for a few hours while some users elect to have it in place in-
definitely. Once the hold has been lifted, the thermostat resumes its
normal scheduled routine. In Fig. 13 we show a histogram of these
fractions. Only approximately 100 thermostats were seen to have a
fraction above 0.9. In fact, 75% of users spend less than one third of the
time in a hold. The most common fractions (on the left of the histo-
gram) appear at less than 0.1. Approximately 10% of users rely heavily
on setting a hold to control their thermostat and spend more than 50%
of their time in a hold.

Fig. 14 presents the median cooling setpoint and the median heating
setpoints for the thermostats. An identity line is included to show the
relation of no change between the two setpoints. Users on this line
would be setting a single setpoint and leaving it there indefinitely. It is

seen that the grouping of users is found above this line, indicating that
users are setting different temperatures for both heating and cooling.
No distinct clusters are observed which could be used to define user
types. For example, users who were all found in the top left corner,
would have a very wide comfort band and would be behaving in an
energy saving way. While there are some users who are in that region,
they are not distinctly separated from the general population.

Observing the three different behavior analyses (Figs. 12–14), the
connected thermostat population appears to have fairly uniform beha-
vior. The data appears in a single tightly grouped region of the various
feature-spaces defined. Applying a label, such as ‘energy-savers’, to a
subset of the population as was done by others [35,36] simply by
identifying their location on the feature-space would only classify a
small fraction of the overall population. Similar to the observation
made by O'Brien et al. [38], the users appear more as a continuum
across the variables of occupied versus unoccupied setpoints (Fig. 12),
holds (Fig. 13), and heating and cooling setpoints (Fig. 14). With the
continued growth of this data set and continued penetration of this and
other smart devices into the home, the ability to identify these beha-
vior-based user types could still exist with broader investigations and is
left as future work. Specifically, the use of other variables or inclusion
of more latent characteristic features such as house size or age of oc-
cupant are considered as next steps.

Fig. 13. Fraction of time spent in holds for each thermostat.

Fig. 14. Heat map for median heating and cooling setpoint for each thermostat.
The identity line is included.
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5. Conclusions

In this article, we analyzed ecobee's ‘Donate Your Data’ dataset. This
open dataset contains more than three million days, for more than
10,000 connected thermostats. The usage of this data source overcomes
many challenges that researchers have previously faced when con-
ducting residential behavior analyses which often were related to the
data sampling and collection. Two specific questions were posed.
Question 1 (Q1) asked if thermostat behaviors changed based on sea-
sons, climates, and utility pricing. We found the thermal preferences of
user's displayed seasonal variations, which generally agreed with ex-
isting models of users' thermal preferences. Indoor temperature in
heating season, was found to not correlate significantly with prevailing
outdoor condition. Evidence of users having regional variation in-
dicating varied expectations and levels of adaptation was observed
based on climate zone to a statistical significance in most cases. For
temperature preferences as a function of pricing signals, no relations of
statistical significance were observed for users in their cooling and
heating energy prices. Question 2 (Q2) asked if user types could be
identified using the interval data based on differences in occupied and
unoccupied setpoints, how holds were being set, and generally the
heating and cooling setpoint selection. It was determined that users'
temperature control behaviors generally reflect proper use of a ther-
mostat based on scheduling and override actions using holds. Their
behavior showed a consistent usage of setback (or set-ups) during un-
occupied periods; which is ultimately part of the value proposition of
connected thermostats. The majority of users do not rely on holds to
operate their connected thermostat but a small fraction of users do still
appear to adjust their thermostat manually. Finally, we showed that the
general heating and cooling setbacks used do not vary drastically be-
tween users, nor do certain visible clusters of users appear. While the
dataset provided a new and unique opportunity for investigation, lim-
itations in our analyses remain. The sample is biased towards home-
owners, early adopters, and a potentially wealthier subset of the po-
pulation. The thermostat setpoint settings and other interactions are an
indicator for optimal comfort, but they do not incorporate factors like
cost. Moreover, thermal comfort is a function of air temperature, mean
radiant temperature, relative humidity, and airspeed. In this paper, we
only focused on air temperature (including aggregated air temperature
from multiple sensors in the home); the ecobee thermostats nor their
remote sensors measure mean radiant temperature or airspeed. Lastly,
the thermostat setpoints are partly a function of occupant behavior, but
also a function of the control logic. Thus, results must be interpreted in
the context that they cannot be directly compared to studies involving
simple thermostats without programmable or advanced logic features.
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