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ABSTRACT 
Our research in on-line monitoring of industrial milling 

tools has focused on the occurrence of certain wide-band 
transient events. Time-frequency representations of these 
events appear to reveal a variety of classes of transients, and 
a time-structure to these classes which would be well 
modeled using hidden Markov models. However, the 
identities of these classes are not known, and obtaining a 
labeled training set based on a priori information is not 
possible for reasons both theoretical and practical. 
Unsupervised clustering algorithms which exist are only 
appropriate for single vector patterns. We introduce an 
approach to unsupervised clustering of vector series based 
around the hidden Markov model. This system is justified as 
a generalization of a common single-vector approach, and 
applied to a set of vector patterns from a milling data set. 
Results presented illustrate the value of this approach in the 
milling application. 

1. INTRODUCTION 
In a traditional vector-sequence classification problem 

such as automatic speech recognition, it is possible to obtain 
training data which has been divided up into classes. The 
goal is to form models of these classes. As will be described 
in Section 2, however, we are working on an application in 
which class labels are not available. As a result, we need a 
method of determining automatically which natural 
groupings exist in the data set. A wide variety of research has 
been done in the area of unsupervised clustering [2], but the 
focus has been on clustering of patterns which consist of a 
single data vector. Our patterns are vector time-series, and 
forcing them into the single vector framework would be 
problematic and undesirable. We have developed a method 
of automatic clustering of vector sequences by generalizing 
a common vector-clustering method. Our new technique 
uses hidden Markov models (HMMs)[7] to define clusters, 
and we attempt to find the set of models which best describes 
the data distribution as a whole. We discuss the behavior of 
this algorithm and the influence of initial conditions, and 
illustrate the algorithm’s successful use in our application. 

2. CHALLENGES OF THE TOOL 
MONITORING APPLICATION 

Our lab is conducting a major research effort into the 
evaluation of machining tool health based on the vibration 
patterns the cutters produce. Some of our recent work has 
been on milling tools. Evidence from a variety of sources 
[1],[3] has led us to focus on transient events which occur 
throughout the data set. We have observed that the frequency 
of these events changes throughout the life of the tool. It may 
be that transients occur during particular dulling events, or it 
may be that the transients occur after particular events (e.g. 
once a tool has chipped, it starts producing more transients). 
Some other transients may be totally unrelated to tool health. 
We have used time-frequency representations such as the 
spectrogram and other higher-resolution distributions [ 5 ]  to 
observe that a wide variety of transients exist, but we have 
no a priori method of associating particular transients with 
particular event classes. We cannot ask a tool to “utter” a 
particular event class, even if we could determine exactly 
what all the event classes were. Furthermore, even on those 
relatively rare occasions in which we are able to establish 
that a particular dulling event occurred, we cannot conclude 
that a particular transient which occurred at that time is in 
fact related to the event. A transient may be of a type which 
occurs seemingly randomly throughout the data set, or a 
transient may be occurring as a result of a previous event. 
Our goal is to extract the transient types from the data, and 
then to relate the short and long-term trends in the frequency 
of particular types to known dulling events and to the overall 
health of the tool. 

3.UNSUPERVISED CLUSTERING: 
VECTORS 

Attempting to find classes which exist in unlabeled data 
is known as unsupervised clustering. This area has been 
intensively studied for situations in which each pattern 
consists of a single point [2] .  Vector quantization (VQ)[4] is 
a form of unsupervised clustering; its objective is to 
represent a wide distribution of data vectors using a small 
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number of vectors (the codebook). If a VQ algorithm can 
find clusters which exist in the data and put its codevectors 
at the center of these clusters, then the codevectors will be 
better representations of the data than if the codevectors 
were sitting far from the bulk of the data. The Generalized 
Lloyd Algorithm (GLA)[4] is a VQ algorithm motivated by 
the recognition that an optimal quantization system for a 
particular data set meets two necessary (but not sufficient) 
conditions. One is that encoding be optimal given the 
codebook. The other condition is that the codebook be 
optimal given the partitioning of the training vectors. The 
codebook training procedure consists of an iterative 
application of these two constraints: 

K 

2 : b , [ n + l ]  = i = l  K (2) 

i = l  - 
where ii is the i’th training vector, b, [n]  is thej’th code- 
vector at iteration index n, and Ci [n]  is the classification 
result for the i’th training vector (i.e. the index of the code- 
vector it is mapped t_o) at iteration n. Equation 1 says that, 
given the codebook bj [ n]  , j = 1 . . .J , optimally classify 
each of the K training vectors ti, i = 1.. .K (by mapping 
them to the codevectors which are closest to them according 
to the L, norm). Equation 2 says that, given the classifica- 
tion results Ci [ n]  , i = 1 . . . K , optimally place the code- 
vectors (at the centroid of the vectors which are mapped to 
them). These statements of optimality assume the L, norm 
classifier. The GLA has been shown to be useful in a variety 
of compression applications [4]. 

4. UNSUPERVISED CLUSTERING: 
VECTOR TIME-SERIES 

VQ algorithms, though, are designed to work on single- 
vector data sets; our time-frequency representations are 
vector-sequence patterns. In theory, we could take the 
single-vector approach to our patterns by fixing the length of 
each transient and then forming one K X D -dimensional 
“supervector” (K=number of time points; D=dimensionality 
of feature vectors). However, this destroys any time 
structure which may exist in a particular sequence and 
simply treats it as an unordered list of points. We instead use 
HMMs to represent clusters, because this allows us to 
express the time-structure information and because it is 
already the model we use in the classification stage [6]. 

5. OUR SEQUENCE CLUSTER 
REFINEMENT ALGORITHM 

We have developed an algorithm, which we refer to as 
the sequence cluster refinement algorithm (SCRA), which is 
analogous to the GLA but which uses HMMs instead of 
template vectors to model clusters. The analogous algorithm 
for training HMMs based on data sets which were comprised 
of vector sequences is as follows: Given an initial set of J 
models M,[O] and K training sequences ti[k], iterate the 
following two conditions (with iteration index n: 

1: C J n ]  = 

V ( i c  l . . .K)  (3) 

(4) 

where p (  ...) means probability and f (  ...) means “is a func- 
tion of,” where that function is in fact the HMM training 
algorithm. In step 1, we find the class labels CJn] by deter- 
mining which of our models MJ[n] had the highest probabil- 
ity of producing the sequence t,[k]. In step 2, we re- 
calculate each model M,[n+l] by choosing it to maximize 
the probability of producing all the sequences which were 
most probably produced by it according to the first iteration. 
The result is that we are iteratively imposing two conditions 
which are necessary (but not sufficient) for the set of mod- 
els which best describes the distribution of the overall data: 
the classification is optimal given the models, and the mod- 
els are optimal given the classification. 

6. PRACTICAL CONSIDERATIONS OF 
INITIAL CONDITIONS 

The most important practical consideration of the 
algorithm which needs to be addressed is the choice of initial 
labels for the training sequences. The GLA is very 
dependent (in terms of final codevector locations, not 
compression performance) on initial conditions, and we 
have seen this to be true with the our clustering algorithm. 
However, we have also found that the importance of initial 
conditions is quite useful because it allows us to influence 
the selection of classes. We have approached this in two 
ways: by incorporating a priori information about what the 
classes might be or by incorporating information about what 
we would like the classes to be. The first approach was taken 
when we had knowledge of an existing event of interest 
(such as a chip being lost from the cutting edge of a tool) and 
we found a group transients in the region of that event. We 
would initially label those transients as members of the same 
class. The algorithm began by devoting one model to 
expressing the distribution of that group. As the iterations 

2: M . [ n +  13 = 4 < . [ k I  : C [ n ]  = j )  
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progressed, the model refined its description of that class by 
passing off to other models patterns which didn’t fit its 
distribution and attracting sequences which were good fits 
but which were previously members of another class (or 
unlabeled). The name SCRA acknowledges that our 
approach is in fact a process of refining the original class 
labels. 

The second approach to initial class labeling is to 
choose class labels such that, if models could be found 
which produced similar labelings, the models would be 
useful in our application. For example, in our mill dullness 
monitoring application we began one training process by 
labeling a set of transients which occurred when the tool was 
sharp “Class 1,” a group from the middle “Class 2,” and a 
group from the dull region “Class 3.” When our algorithm 
found models which produced labels which were as close to 
this starting point as possible, the models were useful to us 
as indicators of tool wear. 

7. RESULTS 
We have tested this algorithm extensively on real and 

artificial data, and in every test it has converged to a single 
state in eight or fewer iterations. Figure 1 illustrates the 
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Figure 1: The evolution of transient class labels in 
a typical application of the sequence clustering algo- 
rithm. This is a three-model system; the bars indicate 
the classification results for the present iteration; the 
gray levels indicate which model the transients were 
used to train at the start of the iteration. 

convergence of the algorithm for a typical data set. Each plot 
shows the change in labels for one iteration of the algorithm. 
It can be seen that in the first iteration approximately 1/3 of 

the transients are re-labeled. By iteration 5, only a few 
transients are relabeled. By iteration 6 (not shown), the class 
labels have solidified and all transients which were used to 
train a particular model are then best represented by that 
model; i.e. the algorithm has discovered distinct clusters. 

We have looked at two methods of judging performance 
improvement due to the SCRA algorithm. The first looks at 
the value of classification results. In judging a traditionally 
trained classifier’s performance, we would want to measure 
classification accuracy, but the motivation for the SCRA 
algorithm is that we don’t know the correct classifications a 
priori and thus can’t measure classification accuracy. As a 
substitute, we measure classification value with the 
assumption that if our classifier produces results which 
accomplish our goal (in this case labeling transients in a 
manner which is indicative of tool state), then the classifier 
must have identified “real” classes even if we don’t 
immediately know what they are. 

The method we have chosen to measure classification 
value is based around the relative entropy measure of the 
difference between two discrete distributions p and q: 

We use this to compare the overall class distribution q to the 
local distributions p computed by dividing the overall tran- 
sient sequence into smaller windows and finding the class 
distribution in each window. The result for a given experi- 
ment is a histogram of entropies, where higher entropy indi- 
cates that a given window is more different from the global 
distribution and thus the class labels provide us with more 
information useful in time-localization of the window in the 
data set as a whole, which is our goal. To calibrate these his- 
tograms, we create a second histogram by randomly creat- 
ing a sequence of classes for the given global class 
distribution q. This histogram tells us what the probabilities 
of seeing windows of various entropies would be if there 
were no non-random structure to the class distributions as a 
function of time. 

Table 1 summarizes some of the results according to 
this measure for 32 experiments conducted on milling data 
transients using a variety of signal representations and initial 
conditions. The table indicates that the SCRA algorithm was 
able to improve transient time-localization in virtually all of 
the cases. We have provided two measures: the percent of 
windows that exceeded the 5% threshold and the percent 
which exceeded the 1% threshold. The meaning of the 5% 
threshold is that, if there were no structure to the 
classification sequence other than that which could be 
expected to occur randomly, only 5% of the windows would 
exceed that threshold (the 1 % threshold is defined similarly). 
According to both measures, there are a large number of 
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regions in which the class distribution is more greatly 
different from the global distribution than could be 
explained randomly, and the SCRA algorithm greatly 
increases that number. We are using these results in our 
research to focus in on those high-entropy regions of the 
tool’s life and develop an understanding of what events 
occur there to make them different. 

Table 1: 

100% 
by SCRA 

7.81% 
threshold originally 

threshold after SCRA 

I %ImprovementduetoSCRA I 37.53% 1 77.98% I 
Our second measure of performance was classification 

certainty. We have observed that, in every instance of our 
application of this algorithm, the final state was an 
improvement over the initial conditions in terms of fit of the 
models to the data. Figure 1 illustrates this for a set of 750 
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Figure 2: Classification certainty (probability that 
the chosen model was the correct one) before and after 
the use of our algorithm for a representative transient 
classification application. 

transients taken from across the data set. For virtually all 
transients, the classification certainty has been improved. 

8. CONTRIBUTIONS 
We have introduced a novel time-sequence unsupervised 
clustering algorithm which is based around the HMM, a 
cluster model specifically designed to express time- 
sequence information. 

We have justified this algorithm, with parallels to the 
successful GLA VQ algorithm, as an iterative applica- 
tion of two necessary conditions for optimal clusters. 

Our empirical studies have shown that the algorithm 
converges quickly and reliably, and produces valuable 
cluster estimates. 

We have shown how the use of initial conditions enables 
the incorporation of knowledge of known or desired 
class types. 

The strong applicability of this algorithm has been dem- 
onstrated in a key manufacturing application. This algo- 
rithm could also be used for applications in machine 
monitoring and speech recognition in which data is 
sparsely labeled or mislabeled. 
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