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a b s t r a c t

Occupancy in buildings is one of the key factors influencing air-conditioning energy use. Occupant
presence and absence are stochastic. However, static operation schedules are widely used by facility
departments for air-conditioning systems in commercial buildings. As a result, such systems cannot
adapt to actual energy demand for offices that are not fully occupied during their operating time. This
study analyzes a seven-month period of occupancy data based on motion signals collected from six
offices with ten occupants in a commercial building, covering both private and multi-person offices.
Based on an occupancy analysis, a learning-based demand-driven control strategy is proposed for sen-
sible cooling. It predicts occupants' next presence and the presence duration of the remainder of a day by
learning their behavior in the past and current days, and then the predicted occupancy information is
employed indirectly to infer setback temperature setpoints according to rules we specified in this study.
The strategy is applied for the controls of a cooling system using passive chilled beams for sensible
cooling of office spaces. Over the period of two months both a baseline control and the proposed
demand-driven control were operated on forty-two weekdays of real-world occupancy. Using the
demand-driven control, an energy saving of 20.3% was achieved as compared to the benchmark. We
found that energy savings potential in an individual office was inversely correlated to its occupancy rate.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The latest 5th Assessment Report of the Intergovernmental
Panel on Climate Change has indicated that anthropogenic green-
house gas (GHG) emissions will continue to cause further warming
of the Earth's surface and cause long-lasting changes to the world's
climate system. The contribution of buildings to global energy use
and energy-related GHG emissions are, in fact, significant. Globally,
buildings in the residential, commercial, public and service sectors
accounted for about 35% of total final energy use and were asso-
ciated with 18.4% direct GHG emissions and indirect carbon dioxide
(CO2) emissions (e.g. electricity) in 2010. Moreover, building-
related energy demand is projected to increase by about 50% be-
tween 2010 and 2050 [1e3].

The main services consuming energy in buildings are space
heating, ventilation, and air-conditioning (HVAC), domestic hot
water, lighting, and electrical appliances. HVAC alone accounts for
g).
the largest share. Worldwide, HVAC services account for approxi-
mately 40% of total energy consumption in buildings [4]. In
particular harsh climate, such as the tropical context of Singapore,
HVAC accounts for over 50% of the building stock's electricity
consumption [5].

Improving the energy efficiency and utility of existing and future
HVAC systems will, therefore, be an important objective for
developing future low-carbon economies. Developing a better un-
derstanding of occupants' behavior in buildings will also be an
increasingly important concern in this process. The presence and
absence of building occupants indicate whether indoor spaces are
required to be air-conditioned or not. Building HVAC systems need
to provide comfortable indoor conditions when the building spaces
they serve are occupied. On the other, they do not need to ensure
indoor conditions are comfortable with spaces unoccupied [6].
Whilst this may be intuitive, the poor anticipation of occupant
behavior has been found to increase building energy consumption
by a third [7]. Furthermore, not all occupants in buildings are suf-
ficiently aware of this or other energy saving initiatives, especially
in commercial buildings, as energy costs are not directly paid by
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Nomenclature

Abbreviations
GHG Greenhouse gas
CO2 Carbon dioxide
HVAC Heating, ventilation, and air-conditioning
RFID Radio frequency identification device
KNN K-nearest neighbor
HMM Hidden Markov model
M Multi-person office
P Private office
HMI Human machine interface
DOAS Dedicated outdoor air system
FCU Fan coil unit
PCB passive chilled beam
AHU Air handling unit
PID Proportional-integral-derivative
WSI Web service interface
REST API Representational state transfer, application

programming interface
M-Bus MeterBus
TD Time delay
RBC Rule-based control
BMS Building management station
DCC Demand-driven cooling control
MID The measuring instruments directive
COV Change of value
IMBPC Inteligent Model Based Predictive Control
PIBCV Pressure-independent balancing and control valve
CDD Cooling degree-days
S1 Six offices that are used to evaluate the sensible cooling

energy gap

S2 Six offices for the DCC study: P1, P2, P3, P4, M1, M2
CPU Central processing unit
RAM Random-access memory
RC Resistance-capacitance
LCD Liquid crystal display
VAV Variable-air-volume

Symbols(unit)
Tsp Temperature setpoint (�C)
Tair Air temperature (�C)
Nx The number of vacancy days in past x days
Std The size of the training dataset
Kvalue The value of K
Pthrshld The threshold of the occupancy possibility
tnp Time of next presence (minute)
tdcc The time at which starting the demand-driven cooling

control (minute)
tsd The time at which the facility department shuts down

the air-conditioning system in the case study space
(minute)

tarr lmt The time at which the cumulative probability of the
first arrivals is equal to a specified value (minute)

tdprtr lmt The time at which the cumulative probability of the
last departures is equal to a specified value (minute)

tdrtn Presence duration of the remaining day (minute)
tdrtn lmt1 The first threshold of presence duration (minute)
tdrtn lmt2 The second threshold of presence duration (minute)
Enbl Normalized daily average cooling energy use of a room

(kWh)
Ebl Measured daily average cooling energy use of a room

(kWh)
Sr The area of a room (m2)
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them [8].
There are two features of conventional HVAC systems that have

historically made it difficult for these systems to automatically
respond to the stochastic nature of occupants' behavior in buildings
[9,10]. The first regards to the behavior of physical controllers in
existing HVAC systems, employing mostly two-position (i.e. on and
off) control or proportional, integral and derivative (PID) control to
keep indoor climates conditioned to temperature, humidity, and
CO2 setpoints [11]. The second is the use of scheduled occupancy
profiles to assign operating hours of HVAC control systems in
commercial buildings.

Demand-driven control is an emerging HVAC control strategy
that has shown promising results in coordinating real-time HVAC
use to occupant presence and vacancy, reducing energy use and
maintaining indoor thermal comfort in buildings [10,12e14]. En-
ergy savings can be achieved by decreasing the temperature dif-
ference between the air-conditioned indoor climate and the
outdoor weather or reducing the operating time of HVAC systems
[15]. In the same manner, demand-driven HVAC control strategies
decrease heating temperature setpoints or increase cooling tem-
perature setpoints when spaces are unoccupied, and they keep the
indoor spaces at comfortable levels when they are occupied.
Furthermore, a demand-driven control system can automatically
deactivate an HVAC system after the occupants have left a building
instead of waiting for scheduled shutdown times.

Central to the effective implementation of a demand-driven
HVAC control strategy is information on: 1) real-time occupancy
and 2) upcoming room occupancy [10,14]. Networks of occupant-
monitoring sensors are essential to measure occupants' behavior,
while, at the same time, algorithms with learning capabilities are
crucial for predicting future room occupancy. Prior research has
shown that HVAC systems incorporating these features have yiel-
ded significant energy savings potential.

For instance, in a residential application, Scott et al. [12]
developed a preheat heating system to anticipate to occupants'
demand. They used radio frequency identification devices (RFID)
and motion sensors to monitor real-time room occupancy status
and utilized the K-nearest neighbor (KNN) algorithm to develop an
occupancy forecast. Their control system then modified room
temperature setpoints to preheat homes according to the expected
occupancy periods. Test results showed that, on the implementa-
tion of this method, total gas consumption for heating decreased by
8%e18% over a 61-day period. Lu et al. [13] explored the energy-
saving potential of a similar application in an EnergyPlus [16]
simulation environment. They collected data from motion sensors
and door sensors installed in each room of a house to generate
room occupancy information, and they used a Hidden Markov
Model (HMM) to forecast the probability of occupants' behavior
(i.e. sleep, active, and not in the home) according to the generated
occupancy datasets. Their simulated result produced an average
energy reduction of 28% for cooling and heating over 14 days in
summer and winter.

As more and more occupants in offices adopt flexible work
hours [17], the total scheduled operating time of HVAC systems
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may increase in duration in order to satisfy occupants of future
commercial buildings [14]. This will come at the risk of consuming
significant amounts of energy in space with low occupancy rates.
Gunay et al. [14] employed demand-driven control to make heating
and cooling systems adapt to flexible working hours in commercial
buildings. They collected data frommotion sensors in seven private
offices and used a sequential learning process to predict occupants'
arrival and departure times. Their control strategy was evaluated in
the EnergyPlus simulation platform, and they predicted annual
energy savings rates of 10%e15% would be possible for an academic
building. Similarly, Erickson et al. [10] also evaluated their demand-
driven HVAC control system in the EnergyPlus simulation envi-
ronment. They gathered occupancy data from a camera sensor
network in a real office setting and used a moving-windowMarkov
Chain to infer probabilities of occupancy changes in relation to
time. Their result indicated that 20% of annual energy consumption
for HVAC could be saved on account of implementing their
demand-driven control strategy. In another study, Ruano et al. [18]
embedded an occupancy predictor in an intelligent Model Based
Predictive Control (IMBPC) system. Their occupancy data was
transformed from signals collected by motion sensors. They
calculated an occupancy forecast from the mean of movement data
ranging from the beginning of schedule to a sample point. Their
approach was applied to 3 classrooms in the Gambelas Campus of
the University of Algarve over 2 weeks, resulting in 56% energy
savings.

Two of the above studies discussed the control accuracy ach-
ieved based on predicted occupancy information. For a household
heating control system, simulation-based results in Ref. [13] illus-
trated that their control strategy based on the HMM approach for
forecasting room occupancy status e sleep, active, and not in the
home e was 88%. For the similar residential application, experi-
mental results in Ref. [12] showed that the prediction accuracy of
presence was around 80% for preheating the whole household with
a 90-min look ahead time.

Whilst the above studies suggest that demand-driven HVAC
control systems can yield significant energy savings, most of them,
and related work in literature, undertook evaluations in the simu-
lation environment only, with very little real-world implementa-
tion and verification. This is especially evident for the context of
commercial buildings.

The contribution of this paper is, therefore, an empirical study of
a demand-driven control strategy with learning capability,
covering real-time occupancy detection, occupancy prediction that
learns from historical datasets, and rule-based control. A holistic
demand-driven HVAC control system is proposed, and results are
presented and discussed upon the system's implementation and
testing in a real commercial office space.

The remainder of this paper is structured as follows. Section 2
gives an introduction to the case study space and its HVAC sys-
tem as well as the experimental setup. An analysis of the case study
offices' occupancy profiles is presented in Section 3. In Section 4, a
methodology for occupancy learning-based demand-driven HVAC
control is proposed. Sections 5 illustrate test results upon imple-
menting the proposed control system. Then, Section 6 discusses
and concludes the study and indicates future work.

2. The experimental space and setup

2.1. Description of the office case study

The experiments undertaken in this paper were carried out
within a 550m2 office space in Singapore designed and operated by
researchers under the Chair of Architecture and Building Systems at
ETH Zürich [19]. For matters of privacy, a floorplan of the study area
cannot be provided in this paper in order to maintain the ano-
nymity of occupancy data to be presented. In lieu of a floorplan, a
thermal resistance-capacitance (RC) diagram is presented in Fig. 1,
describing the thermal interactions between the studied interior
rooms, and across the experimental space's boundary. The total
area of six offices is 118 m2.

Fig. 1 shows the six offices under study, depicted in gray boxes.
Each office is either square or rectangular in shape, and is labeled as
follows:

� M1: an office with two occupants, adjacent to the façade.
� M2: an office with four occupants.
� P1: a single-occupied office, adjacent to the façade.
� P2: a single-occupied office, adjacent to the façade.
� P3: a single-occupied office, adjacent to the façade.
� P4: a single-occupied office.

The air-conditioning system that serves the six offices is
decoupled into two separate, though parallel operating systems.
Decentralized outdoor air systems (DOASs) and fan coil units (FCUs)
are deployed for ventilation and latent cooling, and a water-based
chilled ceiling system is deployed for sensible cooling. The airflow
of the DOAS and FCU is controlled such that the former unit caters
for the net indoor ventilation requirement of the entire zone, and
the latter caters for interior latent loads. The air supplied by the
DOAS and FCU is mixed together before distribution to each room,
with motorized diffusers enabling each room to be supplied with
variable-air-volume (VAV) control. The sensible cooling in the each
room is supplied by passive chilled beams (PCBs), with the chilled
water flow rate supplied to each room's PCBs controlled by
motorized pressure-independent balancing and control valves
(PIBCVs). The benefit of the fully decoupled and decentralized air-
conditioning systems is that it is in effect possible to indepen-
dently control the temperature, humidity, and CO2 concentrations
within each room. Whilst setpoints for these factors are currently
assigned centrally, a human machine interface (HMI), in this case a
liquid crystal display (LCD) mounted in each room, allows occu-
pants in individual office to override the centrally-assigned room
setpoint temperature if and when needed.

With regards to sensoring, each office is equipped with motion
sensors, indoor climate sensors (i.e. temperature, relative humidity,
and CO2 sensors), and one HMI. Motion sensors were installed on
the underside of suspended ceiling panels, 2.8 m above the floor.
The indoor climate sensors were placed at two height levels, 1.2 m
and 2.8 m, and the HMIs were installed at the 1.2 m above the floor.
Furthermore, each room's PCB array is monitored by installed en-
ergy meters, comprising a water flow meter, and temperature
sensors of chilled water supply and return. The meters selected for
this experiment comply with EN 1434 and the measuring in-
struments directive (MID) accuracy class 2 [20], with permissible
relative measurement errors smaller than 7%. Overall, the quanti-
ties of installed sensors, control valves, and HMIs in each office are
provided in Table 1.

2.2. Architecture of the learning-based sensible cooling control
system

The learning-based sensible cooling control system in the case
study offices is defined by three hierarchical layers: 1) the demand-
driven control algorithm, 2) local controllers, and 3) actuators of
sensible cooling together with the sensory infrastructure. The
system hierarchy is illustrated in the block diagram of Fig. 2.

The major goal of the first layer is to dynamically specify set-
points of room dry-bulb temperature by learning from occupants'
historical and current room occupancy. The algorithm developed
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Fig. 1. Thermal resistance-capacitance (RC) diagram of the experimental space.

Table 1
The number of the actuators and sensory infrastructure for the demand-driven
cooling control.

Actuators and sensors Number of them in the
offices

M1 M2 P1 P2 P3 P4

PIBCV 1 1 1 1 1 1
PCB 8 7 6 6 10 2
Energy meter 1 1 1 1 1 1
HMI 1 1 1 1 1 1
Motion sensor 1 2 1 1 2 1
Temperature, relative humidity, and CO2 sensor 3 3 2 2 3 2
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for occupancy learning-based demand-driven cooling control was
implemented in this layer, and is described further in Section 4. This
algorithm has been coded in MATLAB and executed on a worksta-
tion computer that has network access to the office's building
management system (i.e. the second layer). Via this network
connection, the workstation, and thus the algorithms running on it,
have real-time access to sensor data and actuator feedback from the
office space. This communication is provided by a Web Service
Interface (WSI), using the architecture of REST API (i.e. represen-
tational state transfer, application programming interface) for
reading data and writing commands. The workstation itself is a
desktop computer, with an Intel QuadCore i7-3770 (3.4 GHz) pro-
cessor, and 12.0 GB of RAM (1600 MHz).

The second layer consists of local controllers with proportional-
integral-derivative (PID) control and the office’ building manage-
ment station (BMS). The local controllers in this layer are primarily
in charge of adjusting the actuators of the sensible cooling of the
third layer to ensure adherence to indoor temperature setpoints.
The local controllers send analog signals ranging from 0 V to 10 V to
the PIBCVs for controlling the rate of cooling by PCBs. They use KNX
and Meter-Bus (M-Bus) communication protocols to collect data
from the sensory infrastructure.

The actuators and sensors used in the third layer are presented
in Section 2.1, and the quantities of they are listed in Table 1.
3. Measurement and analysis of motion and occupancy
datasets

Dynamic information on room occupancy is one of the key re-
quirements for the demand-driven control. In this study, motion
sensorswere used to observe occupantmovements (i.e. activity and
inactivity) in the offices, and signals from them were processed to
derive occupancy data.

Fig. 3 shows the occupants' stochastic movements during a
randomworking day in the case study offices in 2016. The light blue
background indicates the scheduled comfort period defined by the
office's BMS. As shown in this figure, not all of the offices appear to
have been consistently occupied during the daily comfort period.
However, this is so far based on binary “active” or “inactive” signals
from the motion sensors. In other words, these sensors can
recognize occupants' presence promptly but cannot distinguish
between an occupant's absence and sitting near-motionless in the
office. A specified value of time delay (TD) is assigned to interpret
motion sensor measurements in terms of occupancy. The TD is the
minimum time required between motion sensor “active” signals in
order to assume an occupant is not physically present [21]. It is a
user-defined parameter. To define it for this case study, data from
the motion sensors installed in the six rooms were gathered from
seven months before the experiments in 2016. Inactive time slices
(i.e. durations between “active” motion signals) were extracted
from the seven-month motion dataset. Fig. 4 shows the cumulative
probabilities of inactivity time slices of the offices. As shown in this
figure, short inactive slices (i.e. less than 100 s) account for the
majority of the collected data. To some extent, the high cumulative
probabilities of short slices of inactivity are attributed to the sam-
pling method employed by the motion sensors: change of value
(COV). When a motion sensor detects a movement, a logic ‘high’
state (i.e. 1) is recorded in the air-conditioning control system. This
is different from other motion sensors where a delay time setting is
incorporated, which requires the logic ‘high’ state to be maintained
for a minimum duration after detecting the motion. In all, the COV-
based motion sensors implemented in the experiment create more
short slices of inactivity. Thus, in order to obtain a high confidence
level of verifying occupants' vacancy, 600 s (i.e. 10 min) was used as
the TD value, which is consistent with prior research [14,22].



Fig. 2. Architecture of the demand-driven cooling system.
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After transforming motion data to occupancy information with
1-min time intervals, occupancy probability distributions over
weekdays of themonitored sevenmonthswere analyzed. As shown
in Fig. 5, three key types of occupancy patterns were observed in
the six offices:

� Multi-person offices M1 and M2 have high occupancy rates, and
the peak occupancy probability of them is above 90%.

� Private office P4 has a medium occupancy rate, and the peak
occupancy probability is above 60%.

� Private offices P1, P2, and P3 have low occupancy rates. Their
occupancy rates rarely go over 50%.

As the private offices have much lower occupancy likelihood
than the multi-person offices, one could expect that correct
assignment of a setback temperature (i.e. higher cooling tempera-
ture) during occupants' vacancy periods would be a useful energy-
saving measure for these spaces.
Two further important features of the occupancy data were
extracted from the seven-month occupancy dataset: the first arrival
and last departure. These twometrics can be used to determine the
appropriate sensible cooling scheduled operation hours for indi-
vidual offices.

Fig. 6 illustrates the cumulative probabilities of the first arrivals
for the six offices. Approximately 98% of the first arrivals occurred
before 8 a.m. in two multi-person offices: M1 and M2. Around
85%e90% of the first arrivals occurred before the same time in the
other four private offices. Fig. 7 presents cumulative probabilities of
the last departures, which were different in all the six offices. The
last departure times appeared to be more stochastic and less pre-
dictable, though most of them occurred before the end of the time
of the air-conditioning service (i.e. 6 p.m.). In the M1, P1, P2, P3, and
P4 offices, some recorded last departures were occurred as early as
the morning, likely signifying a lack of any substantial occupant
presence for an entire day. In the afternoon, M1, P1, and P2 offices
had steep slopes in the cumulative probability curves from 4 p.m. to
5 p.m. In all, as there are days where last departures from all offices
occur before 6 p.m., shutting off the sensible cooling system
entirely at these earlier times could contribute to energy savings by
reducing the daily operating duration.

4. Methodology

4.1. Overview

As shown in Fig. 8, the methodology for the demand-driven
control algorithm layer in Fig. 2 includes three modules: 1) occu-
pancy data processing, 2) an algorithm for occupancy learning and
prediction, and 3) rule-based control (RBC). The sensible cooling of
each office in the test space is controlled by this control frame
individually right up to occupants' random presence and vacancy.

As defined by the facility department's operation schedule, the
test office space is normally air-conditioned to defined ‘comfort’
setpoint conditions between 7:00 and 18:00 on weekdays. The
proposed demand-driven cooling control model discussed above
takes over the overall space's existing central-control by specifying
time-dependent room temperature setpoints for individual rooms
between 8:00 and 18:00 on weekdays.

During the demand-driven control on weekdays, the first
module collects and interprets historical and present occupancy
information into datasets to be used by the second module. To do
so, the module accesses the space's local controllers for reading
real-time signals from the motion sensors installed in the moni-
tored six offices, calling data reads at 1 min time intervals. This data
is transformed into the occupancy information using the method
described in chapter 3. The data is saved in a vector that represents
the current daily occupancy information as time progresses. At the
end of the day, the daily occupancy data is also updated into two
historical occupancy datasets: weekday occupancy data and
weekend occupancy data according to the given date.

After retrieving the occupancy information, the algorithm in the
second module infers the likelihood of occupancy presence in
future by learning from the profiles of occupant presence and va-
cancy in past days e i.e., the datasets provided by the first module.
Finally, the RBC of the third module infers an appropriate room
temperature setpoint for the future hours according to forecasted
occupancy information, pre-defined temperature setpoints of
comfort and setback modes, and constraints. The setpoints gener-
ated by this module is then sent as a command to local controllers,
with any existing setpoint overridden by a new value.

The algorithm embedded in the second module and the control
strategy employed in the thirdmodule are presented in Sections 4.2
and 4.3 respectively.



Fig. 3. An example of daily motion signals of the six offices during the experiment in 2016.

Fig. 4. Cumulative probabilities of inactivity slices in the six offices (seven-month data
before the experiment in 2016).
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4.2. The algorithm of occupancy learning and prediction

Inspired by the work of Scott et al. [12], K-nearest neighbor
(KNN) was employed to predict future occupant behavior in this
study. Occupants' behavior is represented in a daily time-frame
with random times and duration lengths associated with pres-
ence and absence. To some extent, the learning process of the KNN
algorithm involves computing the difference between the vector-
based, time-independent occupancy data. Scott et al. [12] used
KNN to undertake occupancy forecasting for the control of a resi-
dential heating system. In this work, we not only use KNN to predict
occupants' next presence but also to forecast presence duration in
the coming hours for demand-driven control of a cooling system in
a commercial building. The formatted occupancy dataset, and the
process for defining the parameters of KNN, are therefore different
in this work from the strategy employed by Scott et al.
KNN is an algorithm for supervised learning that rests within
the wider field of machine learning [23]. It has been recognized as
one of the ‘top ten’ algorithms in the data mining area by the IEEE
International Conference [24]. Generally, KNN is used to search
which K sets of data from a prepared training set aremost similar to
a new piece of data. The main label of K-most-closest objects is
assigned to new data for the purpose of prediction or classification
[23,25].

Datasets are necessary for this data-based learning algorithm.
For the prediction of occupancy, datasets are comprised of a
training dataset that is selected from historical weekday occupancy
data and a piece of new occupancy data that presents existing oc-
cupancy information in the current partial day. As shown in Fig. 9,
the daily occupancy information of the training set and the current
day is formatted to a binary vector at a resolution of 1-min in-
tervals. In each bit of the vector, 1 indicates that the office is
occupied, and 0 indicates that the office is not occupied.

KNN is an algorithm based on the geometric concept. It com-
putes the distance between a piece of test data and a group of
training data to recognize the proximity to each other [25]. In this
study, the Hamming distance is used to determine the K-most-
similar neighbors of the current occupancy data from the training
set. The basic process is to measure the number of bits within the
training vectors and the current occupancy vector at which the
corresponding presence (i.e. 1) and vacancy (i.e. 0) are different
[12,26]. For instance, taking a small part of elements from two daily
occupancy vectors (i.e. a and b) in Fig. 9 is convenient to interpret
the Hamming distance calculation process. a is a partial vector in
the training set and b is a corresponding vector from the current
occupancy data. The sectional vectors a and b as well as the Ham-
ming distance dða; bÞ are presented in Eqs (1)e(3), respectively:

a ¼ ½0;0;0;0;0;0;1;1;1;1;0;0;0� (1)



Fig. 5. Weekday occupancy probability distributions (seven-month data before the experiment in 2016).

Fig. 6. The cumulative probability distributions of the daily first arrivals (seven-month
data before the experiment in 2016).

Fig. 7. The cumulative probability distributions of the daily last departures (seven-
month data before the experiment in 2016).
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b ¼ ½0;0;0;1;1;1;1;1;1;1;1;1;1� (2)

dða;bÞ ¼dð½0;0;0;0;0;0;1;1;1;1;0;0;0�;
½0;0;0;1;1;1;1;1;1;1;1;1;1�Þ ¼ 6

(3)

Additionally, another three critical parameters associated with
the KNN learning process are also specified in this study, including
the size of training dataset, the value of K, and the threshold of the
occupancy probability. The first two parameters are integers, and
the last one is a fraction.

According to observations from the case study building, occu-
pancy is highly stochastic across the monitored offices. The room
owners' daily work and life (e.g. paperwork, meetings, business
trips, and annual leaves) impact on the random presence in the
offices. Meanwhile, each office appears to be affected by the
random presence of room owners and visitors. For instance, when
the office owners are not in the offices, the presence collected by
the motion sensors also include:

� The staff in other departments accesses the offices for cleaning
space, or maintaining office plants and equipment, or security
patrol.

� The office owners' colleagues enter into the rooms to collect files
or use the space for meetings.

We account for this stochastic behavior by not using static
values for the size of training dataset and K, and regard selected K-
similar days as equal without assigning weights to them in the
learning process. Meanwhile, both the room owners and inter-
mittent visitors are treated as occupants in this study.

The size of the training set (Std) defines the number of past daily
occupancy vectors used for searching K similar neighbors. If the
value of Std is too large, the KNN learning can not quickly adapt to
changes in the occupants' behavior as contexts vary (e.g. holiday
seasons, full-load office work, and new employees). If the value of
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Fig. 8. The block diagram of the occupancy learning-based demand-driven cooling
control.

Table 2
The mechanism for setting the size of the training dataset and the value of K.

Kvalue ¼ max
�
N20;

NStd �20
Std

�
þ 1 (4)

The number of days that the
individual office is not occupied

The size of the training dataset
Std

The value of K
Kvalue

N20 N30 N40

N20 <5 20 5
5 � N20 � 10 N30 � 15 30 Eq. (4)
5 � N20 � 10 N30 >15 40 Eq. (4).
N20 >10 N40 � 20 40 Eq. (4).
N20 >10 N40 >20 45 Eq. (4).
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Std is too small, the training set is not enough to efficiently finding
out K pieces of past daily occupancy information. To balance these
two aspects, in this research we limit the number of occupancy
vectors with precenses in the training set to less than 30 and more
than 14. However, if a particular office tends to be empty frequently
(i.e. the number of empty days is over 20 in past 40 days), the Std is
fixed to 45. The detailed mechanism based on pre-established rules
is illustrated in Table 2. Actual values of Std are determined by the
number of vacant days (i.e. there is no one present) in an office in
the past 20 days (N20), past 30 days (N30), and past 40 days (N40).

Similarly, a large value for K (Kvalue) will overstate predicted
occupants' presence times and durations. A small value will
0 0 0 10 1 1 11 1

0 0 1 11 1 1 01 0

1 1 1 11 1 1 11 1

0 0 0 00 0 1 11 1

0 0 0 11 1 1 11 1

Past minutes of the current da
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current day
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b

Fig. 9. The occupancy format of the train
underestimate these two parameters. Normally, the Kvalue is chosen
by fine tuning via trial-and-error, or is assigned using cross-
validation [27]. In this study, when an office is usually occupied,
i.e., N20<5, the Kvalue is assigned to 5 in the same manner as used
and verified by Ref. [12]. However, as we recognized Kvalue ¼ 5
become small as the Std and the number of empty days increase, we
summarized a formula for calculating Kvalue in Eq. (4). The purpose
of it is to minimise underestimates of occupants' presence and
durations. NStd denotes the number of days that a room is not
occupied in the selected training dataset.

Together with Kvalue, Std is updated once per day. In the demand-
driven control phase, the occupancy prediction algorithm is only
triggered when the office is empty. In each minute of unoccupied
periods, the KNN recognizes K sets of occupancy vectors from the
training dataset with computing the Hamming distance between
the current partial occupancy vector and all the elements of the
training dataset in the same time span.

Segments of the K-closest occupancy vectors corresponding to
remaining minutes in the current day are used to compute the
occupancy probability of each bit. After obtaining the occupancy-
probability-based vector, a probability threshold (Pthrshld), which
is a constant value that can be defined between zero to one, is
required to state presence or vacancy status in individual bit of the
probability vector. We set Pthrshld to zero because ensuring the
thermal comfort for occupants is always the highest objective in
this study. This way, presence is marked once the occupancy
probability in that bit is greater than zero. For a more energy-
conscious purpose, Pthrshld can be set to a larger value to
1 11 1 1 11 0 0 00 0

0 00 0 0 00 0 0 10 1

1 11 1 1 11 1 1 11 1

0 00 0 0 00 0 0 00 1

1 11

y

nute of day
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guarantee a higher confidence of coming occupancy [12].
The remainder occupancy probability vector is transformed to a

partial occupancy vector by Pthrshld. Next, this occupancy vector is
regarded as forecasted occupancy information for the rest of the
current day. In the last step of the occupancy prediction process, the
time of the next presence and the total presence duration in the
remaining day are computed from above predicted occupancy
vector.

4.3. Rule-based control

The RBC module aims to determine air temperature setpoints
over the demand-driven cooling control (DCC) period for the local
controllers based on rules specified in this module and the occu-
pancy information obtained from the above two modules.

Three temperature setpoints are defined for the RBC control
process: comfort, idle, and economy. The last two temperature
setpoints are regarded as setback temperatures, with the former
representing the main temperature setpoint during occupied
hours. For the six offices, the comfort temperature is fixed at
22.5 �C. The idle temperature is a higher room temperature, and
represents the temperature which occupants could tolerate for
short durations before becoming uncomfortable. We have assumed
that an indoor temperature of 23.5 �C, 1 �C higher than the comfort
setpoint, is within an appropriate tolerance to represent the idle
temperature of the case study's occupants. This idle temperature is
applied to save cooling energy when the offices are not occupied,
but there is a modest likelihood that occupants could still arrive in
the current day. An economy temperature setpoint of 35 �C is
assigned to shut down the cooling system in an office when its
occupants do not present for the remainder of a day.

When an office is occupied, the sensible cooling runs in the
comfort mode (i.e. 22.5 �C). Conversely, when it is not occupied, the
control policy of the room changes to its setback mode (i.e. 23.5 �C
and 35 �C). In the DCC, the changeover between room setpoints of
the setback mode does not purely depend upon the time of next
presence (tnp) in a day. In this study, the predicted presence dura-
tion for the remaindar or the day (tdrtn) is also a key parameter for
deducing the setback temperature setpoints. Because as the value
of tdrtn decreases, space tends not to be occupied over the day. To
effectively implement these two predicted occupancy-dependent
values into the DCC, we specify prerequisite rules for the change
in the current indoor temperature setpoints (Tsp) based on statis-
tical analysis (i.e. tarr lmt , tdprtr lmt as below), time of the DCC
operation (i.e. tdcc and tsd as below), and constraints of presence
durations (i.e. tdrtn lmt1 and tdrtn lmt2 as below). The rules are listed
in Table 3, and the unit of t-related values is minute.

The variables tdcc, tsd, tarr lmt , tdprtr lmt , tdrtn lmt1, and tdrtn lmt2 are
configurable and intend to make the DCC adaptable to re-
quirements of diverse application contexts. In this study, they are
defined and set as below:
Table 3
The mechanism for specifying temperature setpoints for the comfort and the setback m

Occupancy status in an office Predicted occupancy information

Time of next presence (tnp) Pres

1
0 tdcc < tnp < tarr lmt

0 tarr lmt � tnp < tsd tdrtn
0 tarr lmt � tnp < tsd tdrtn
0 tsd � tnp < tdprtr lmt tdrtn
0 tsd � tnp < tdprtr lmt tdrtn
0 tdprtr lmt � tnp � 1440
0 No presence
� tdcc is the time at which the DCC starts to specify the time-
dependent temperature setpoints for the local controllers. It is
set to 480 (i.e. 8:00).

� tsd is the time at which the facility department shuts down the
air-conditioning systems in the case study space. It is set to 1080
(i.e. 18:00).

� tarr lmt is the time at which the cumulative probability of the
first arrival is 95%. Similarly, tdprtr lmt is the time at which the
cumulative probability of the last dparture is 95%. Both param-
eters are computed according to the occupants' behavior in each
office, using the same historical occupancy dataset presented in
Figs. 6 and 7.
For a more energy-conscious purpose, the thresholds of cumu-
lative probabilities of the first arrivals and the last departures for
tarr lmt and tdprtr lmt can be defined to a small value such as from
90% to 95% or more less. This is because small thresholds of
these parameters make the economy temperature setpoint
enter into the time-frame that is defined in Table 3 earlier. A
value higer than 95% is not recommended because the first
presence and the last departure in the other 5% are regards as
unusual behavior patterns for the DCC.
Additionally, for defining values of tarr lmt and tdprtr lmt accord-
ing to the cumulative probabilities, it needs to be ensured that
tarr lmt is smaller than tsd and tdprtr lmt is greater than tsd.

� tdrtn lmt1 and tdrtn lmt2 are set to 10 and 15, respectively.

According to the pre-conditions defined in Table 3, tdcc, tarr lmt ,
tsd, and tdprtr lmt divide a 24-h day into five segments: ½1; tdcc�,
ðtdcc; tarr lmtÞ, ½tarr lmt ; tsdÞ, ½tsd; tdprtr lmtÞ, and ½tdprtr lmt ; 1440�. The
last four are used here.

In the time between tdcc and tarr lmt , occupants tend to arrive in
the office. When an office is not occupied and the predicted tnp falls
into this period, the DCC sets the room temperature to 23.5 �C for
the setback mode irrespective of whether the presence duration is
short or long.

The occupants' last departures are mostly distributed in
½tarr lmt ; tsdÞ and ½tsd; tdprtr lmtÞ. Due to the fact that the time of
shutting down the air-conditioning is at tsd in the experimental
offices, the thresholds of presence durations in these two spans (i.e.
tdrtn lmt1 and tdrtn lmt2) are defined differently. When the tnp lays
within these two spans, the forecasted tdrtn is determined to limit
the office temperature to the idle level or to release it beyond the
tolerance by setting the setpoint to 35 �C. For the above two time
ranges, two control concepts are highlighted as follows:

1. We assume the occupants are not concerned whether the room
temperature is comfortable or not when they are only present in
the offices for a short time (i.e. tdrtn lmt1) and leave space in a day.
So if the predicted tnp is in the time between tarr lmt and tsd, and
tdrtn is less than or equal to tdrtn lmt1, the RBC will send
odes.

Temperature setpoint (Tsp)

ence duration of the remaining day (tdrtn)

22.5 �C
23.5 �C

> tdrtn lmt1 23.5 �C
� tdrtn lmt1 35 �C
> tdrtn lmt2 23.5 �C
� tdrtn lmt2 35 �C

35 �C
35 �C



Fig. 10. (a) Outdoor daily average dry-bulb temperature distributions (box plot) and
mean values (cross) (b) Outdoor daily average horizontal solar radiation distributions
(box plot) and mean values (cross).
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commands to the local controllers to change the temperature
setpoint to 35 �C.

2. There is no air-conditioning service after tsd even if the occu-
pants come back office after that time. Likewise, the DCC also
swich off sensible cooling with PCB valves at tsd, following the
policy of the facility department.
Nonetheless, when the forecasted tnp falls into the period that is
from tsd to tdprtr lmt (i.e. the off-service period) and the tdrtn is
greater than tdrtn lmt2, the DCC changes Tsp to 23.5 �C instead of
totally shutting down the cooling operation by setting temper-
ature setpoint to 35 �C. Thus, if an occupant will come back
during this period and prefer to stay in an office for a longer
time, the cooling energy stored in the space by limiting room
temperature to 23.5 �C can serve the occupant for a while. The
sensible cooling is only shut down when the presence duration
is relative short (i.e. less than or equal to tdrtn lmt2) in this period.

As discussed previously, the occupants' presence and absence in
the case study offices are stochastic. In order to avoid frequently
and unnecessarily cooling down space, the DCC does not change
temperature setpoints to the comfort mode from the setback mode
when the presence duration is less than 3 min. To achieve this, we
integrate a function to recognize current presence as a short stay or
not. After 12 min, the setback mode is changed to comfort mode
when presence is not a short stay.

5. Results

5.1. Contexts of the experiments

For this research, two sets of experiments were carried out over
two months in the six offices (i.e. S2 includes P1 to P4 and M1 to
M2): a baseline test where no DCC is employed, called the local
control, and a test where the proposed DCC is employed. Each test
lasted 21 weekdays. The overriding daily operational period of the
offices' air-conditioning system, and the comfort setpoint temper-
ature, were kept the same for both tests.

The local control employed in the baseline test represents the
standard sensible cooling control strategy embedded in the BMS of
the case study building. However, the sensible cooling energy
consumed in the baseline test is not used as the energy benchmark
directly to evaluate energy savings achieved by the DCC control test
as the indoor and outdoor conditions during two tests are different.
Assessing energy savings for different controls is a complex task
[28] due to varying contexts.

On the basis that outdoor climate and room occupancy are two
key factors that influence the energy use of HVAC systems [15,29]. It
is intended in this study to normalize metered energy consumption
above both the baseline test and the DCC test against these two
conditions. Fig. 10a and b show distributions (box plot) and mean
values (cross) of outdoor daily average dry-bulb temperature and
horizontal solar radiation in the experimental periods, respectively.
Weather datawas gathered from an on-siteweather station located
on the roof of the case study building. The means of the outdoor
daily average dry-bulb temperature and the horizontal solar radi-
ation in the DCC test are both greater than that of the baseline test.

In Fig. 11, distributions (box plot) and means (cross) of daily
A ¼
�0:05

�
kW

�
m2�; the room adjacent to the fa�cade ði:e: M1; P

0:03
�
kW

�
m2

i
; the room not adjacent to the fa�cadeði:e: M
occupied durations in the six offices of S2 differ both in the baseline
test and the DCC test. On the whole, the occupancy duration of the
six offices during the DCC test is also greater than that of the
baseline test.

The normalization method of cooling degree-days (CDD) is
mainly based on weather variation [30], and there is limited liter-
ature for the normalization of other variations such as occupancy.
In this study, another six offices (S1) with the same contexts and
experimental setup are employed to evaluate sensible cooling en-
ergy gaps between two experimental months. The features of S2
and S1 include:

� S1 and S2 are equipped with the same air-conditioning and
sensor systems.

� S1 and S2 are on the same floor and are close to each other.
� S1 and S2 have the same number of offices adjacent to and not
adjacent to façades: four and two, respectively.

� S1 and S2 had higher occupancy rates in the second month:
these increased 1.44% and 21.9%, respectively.

The control strategies implemented in S1 and S2 are listed in
Table 4, and the number of days of the week in the first and the
second twenty-one days are same.

For the six offices of S1 with the same baseline control in two
months, the daily average sensible cooling consumption in the
second 21 weekdays is higher than the first 21 weekdays:
increasing 0.05 kW/m2 for the offices adjacent to the façade, and
increasing 0.03 kW/m2 for the offices not adjacent to the façade.
These two values are used to calculate the sensible cooling energy
benchmark for each room in S2 according to Eq (5).

Enbl ¼ Ebl þ ASr (5)

Where
1; P2; and P3Þ
2; P4Þ



Fig. 11. Daily occupancy durations (box plot) and mean values (cross).

Table 4
The control strategies are deployed in S1 and S2 during experimental months.

Control strategies

S1 S2

1st twenty-one weekdays The baseline test The baseline test
2nd twenty-one weekdays The baseline test The DCC test

Table 5
Sensible cooling energy savings of the offices and the whole space of S2 in the DCC
test.

Offices in S2 The whole space of S2

M1 P1 M2 P2 P3 P4

Energy saving (%) 5.7 39.4 �6.1 22.3 36.0 21.2 20.3
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In Eq (5), Enbl and Ebl are respectively the normalized and
measured daily average cooling energy use of a room in S2 during
the baseline test, the unit of which is kWh. Sr is the area of a room in
S2, the unit is m2.

The following subsections will present test results associated
with the proposed DCC in details.
5.2. Energy savings

Each office has one thermal energy meter installed to record the
real-time sensible cooling energy load, and the energy use of the
sensible cooling is calculated from them. For the evaluation of en-
ergy savings achieved by the DCC in S2, the benchmark of sensible
cooling use in each office is calculated according to Eq (5), and
energy use in the DCC test is extracted from measured cooling
energy data. Fig. 12 shows the daily average sensible cooling energy
consumption of the benchmark and the DCC in relation to the six
offices of S2, and Table 5 presents energy savings of them and the
whole space of S2.

The test results showed that energy savings achieved by the DCC
were closely inversely correlated to occupancy rates within the
individual offices. The energy savings in the offices with low or
Fig. 12. Normalized daily average sensible cooling energy use in each office during the
experiments.
medium occupancy rates (i.e. P1 to P4) reached 21.2%e39.4% by the
DCC. As the occupancy rates increase, the energy savings were less.
For M1, with long daily average occupancy durations (i.e. from 5.7 h
to 7.5 h), the energy savings achieved by the DCC was 5.7%. It is
anticipated that if the daily average occupancy time increase to a
duration close to or greater than the scheduled air-conditioning
operating hours, there would be no energy-savings achievable by
the DCC, such as the room M2.

Overall, for the six offices in S2, the proposed DCC strategy saved
20.3% sensible cooling energy.
5.3. Control performance

Two examples of the DCC test in the private offices P2 and P3 are
shown in Fig. 13 and 14 respectively. Each figure depicts four
curves: office occupancy, time-dependent room Tsp, measured
room average temperature (Tair), and PCB cooling energy. In the
occupancy curves, short presence of less than 3 min during the
setback mode are drawn in gray. Likewise, for the PCB cooling
power curves, the periods of the setback mode that are set Tsp to
23.5 �C or 35 �C are in the light and dark green backgrounds,
respectively. For the DCC during 8:00 to 18:00, Figs. 13 and 14 cover
the main scenarios defined earlier in Table 3. They also present the
successful operation of the comfort mode and the setback mode
according to the occupants' presence and vacancy in the offices. The
DCC also effectively ignores occupants' quick presence in the gray
curve during the setback mode. If the occupants are not in their
offices, the DCC sets the indoor temperature to 23.5 �C or 35 �C in
the setback mode according to the RBC rules associated with pre-
diction occupancy data. The main observation from the DCC test, as
shown in Figs. 13 and 14, is that chilled water supply to the PCBs in
the individual offices is reduced, or shut off, during unoccupied
periods. This illustrates the main mechanism by which the DCC
achieves energy savings.

The predicted next-presence time and presence duration for the
remainder of a day are used indirectly to infer setback temperature
setpoints according to the pre-conditions described in Table 3:
predicted presence falls into which time segment and forecasted
occupancy duration is greater or less than which threshold.
Therefore, to quantify the control accuracy of the DCC based on the
predicted occupancy, three key criteria that potentially affects oc-
cupants' thermal comfort or tolerance are extracted from Table 3:

1 The DCC should switch the setback mode to the comfort mode
when occupants are back to the office with a stay that is greater
than 2 min before tsd.

2 The DCC should set the setback mode with 23.5 �C when an
office is empty and will be occupied before tsd with a duration
that is greater than tdrtn lmt1.

3 The DCC should set the setback mode with 23.5 �C when an
office is empty and will be occupied between tsd and tdprtr lmt
with a duration that is greater than tdrtn lmt2.

To calculate the overall accuracy of the DCC, the daily control
accuracy is set to zero when temperature setpoints reasoned by the



Fig. 13. Three-day sensible cooling control in the private office P2 during the DCC test (explained in the above text).
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DCC do not meet the above criteria, even though it only happens in
a control cycle (i.e. 1 min) in a day and the air temperature of space
is still in the occupants' thermal tolerance (i.e. between 22.5 �C and
23.5 �C). On the other hand, the daily control accuracy is set to one
Fig. 14. Three-day sensible cooling control in the private offi
when the DCC achieves the three criteria during all minutes of the
DCC control period in a day.

Table 6 presents the control accuracy of the DCC in correctly
anticipating occupant behavior and expectations. It shows the
ce P3 during the DCC test (explained in the above text).



Table 6
The accuracy of the DCC algorithm as tested.

Offices M1 P1 M2 P2 P3 P4 Total

Control accuracy (%) 95.2 81.0 100.0 81.0 90.5 81.0 88.1

Table 7
The number of days that the DCC did not meet the criteria.

The number of days

M1 P1 M2 P2 P3 P4

The 1st criterion 0 0 0 0 0 0
The 2nd criterion 1 4 0 4 1 4
The 3rd criterion 0 0 0 0 1 0
Overall 1 4 0 4 2 4

Fig. 15. Office temperatures during the occupied time in the baseline and DCC test.
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percent number of days, out of 21 tested weekdays, that the DCC
satisfies the three criteria at all times. The results are shown on a
per-room basis. Overall, the DCC shows good control performance
on the multi-person offices M1 and M2 as well as the private office
P3, and accuracy rates of them are over 90%. The control perfor-
mance of another three private offices P1, P2, and P4 reached an
intermediate level: 81.1%. The average control accuracy of the entire
tested space was 88.1%. In order to analyze how daily occupancy
patterns affect decision makings of the DCC, the above control ac-
curacy is calculated in days. This will increase to 90.5% if we use the
percent number of hours, versus days.

As the stochastic presence of occupants in a multi-person office
overlaps with one another, intermittent periods of occupancy are
relatively rare for the M1 and M2 spaces versus others. This also
suggests why the DCC accuracy in M1 and M2 is higher than that of
the single person offices.

To look deeper into the accuracy of DCC, Table 7 specifies the
number of days that the DCC did not fulfill the three criteria. The
largest cause of error in this period were times which the DCC
incorrectly set the setback temperature to 35 �C where the idle
setback temperature 23.5 �C would have been required. This
occurred when:

� An office would become occupied randomly towards the end of
the working day.

� An office would become irregularly occupied for short periods.

Taking the office P4 as an example, the space in all four days that
DCC did not meet the second criterion is only occupied for short
periods. According to our records, these short durations were
triggered by visitors and the room owner of office P3, because both
needed to pass the office P4 to get access to the office P3. As this
type of short presence is easier to deviate from occupancy patterns
in the training set, the KNN learning tends to regard it as no pres-
ence in the space.

This reasoning can be used to apply to the days that did notmeet
the second and the third criteria in all test offices. When the oc-
cupancy pattern of the current day does not belong to the pre-
dominant patterns or deviates from them in the training dataset,
the DCC in this paper set the room temperature according to pat-
terns of the main scenarios that are most close to the pattern of the
current day.

5.4. Room temperatures of occupied periods

As well as improving the energy efficiency of the office space,
assuring that the occupants of the test spaces would be thermally
comfort is a primary objective of this research. Each room in the
test is equipped with several temperature sensors to monitor real-
time air temperatures, as well as an HMI to let the occupants view
their room's temperature and adjust their room's temperature
setpoint according to their own thermal preferences.

For analyzing temperatures during occupied periods of the six
offices of S2, the average air temperature of each occupied slice
during the baseline and DCC test is calculated from the raw dataset.
The room temperature cannot be maintained at a fixed setpoint
constantly, and is usually kept within a small band compared to the
setpoint (e.g. ±0.5 �CþTsp). Three temperature levels are employed
here to compare room temperatures in the occupied slices during
the baseline and DCC test: 22.5 �C, 23 �C, and 23.5 �C. In this
research, the comfort setpoint is defined as 22.5 �C, the 23 �C is the
assumed upper boundary of the comfort setpoint, and the assumed
temperature tolerance for the setback mode is 23.5 �C.

Fig. 15 illustrates percentages of total occupied durations, in
terms of minutes, for room temperatures less than or equal to the
three levels. The occupied durations of room temperatures less
than or equal to the comfort boundary (i.e. 23 �C) achieved 97.8%
and 93.6% in the baseline and DCC test respectively, with a small
difference between them (i.e. 4.1%). In the DCC test, room tem-
peratures above 23.5 �C during the occupied periods account for
less than 0.5% of the total occupied duration, and all of them are less
than 17 min.

For investigating whether occupants changed temperature set-
points to adjust the controlled room temperature during the DCC
test, temperature setpoint shifts modified by the occupants were
collected from the six HMIs. It was found that the temperature
setpoint shift was done only once throughout the entire DCC test
period. One occupant in M2 changed it to the 22.5 �C from the
setback mode, though the air temperature in that time was 22.7 �C
with only a 0.2 �C deviation. As presented in Section 4, to avoid
frequently cooling down space relative to the quick presence, the
DCC delayed 12 min to make a decision whether or not to change
room temperature back to the comfort mode. This temperature
adjustment in M2 occurred in the 12-min period. It is possible to
overcome this situation by disabling the function of the quick
presence detection and making the DCC switch the comfort mode
back as soon as a motion sensor is triggered.
5.5. Computation time

The time step of the DCC is set to 1 min, and the computation
process during a cycle is broken down into four steps: 1) reading
sensor data, 2) processing data, 3) occupancy prediction and RBC,
and 4) writing commands.

In each control cycle, the computation time of the above four
steps was recorded into a log to evaluate the computational re-
sources for such control. Fig. 16 shows the mean computing time of



Fig. 16. The mean computation time of each computational step and the overall process in a control cycle.
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the four phases together with the overall process. It can be
observed that the DCC computation only needed 20.5 s in one cycle,
and the remaining 39.5 s would be a waiting period for entering
into the next control loop. Among the computational stages,
reading sensor data accounted for the largest percentage of the
computation time d 59%. The occupancy prediction and RBC that
are concerned most is just used 3.3 s with a small share d 16.5%,
similar to the time consumed by the data processing.

Normally, the KNN algorithm requires a comparatively expen-
sive computational resource due to calculating the distance be-
tween new data and all elements in a training dataset, especially
when the training dataset has a large size [23,24]. For predicting
occupancy, the Hamming distance for vectors can be computed
quickly. Meanwhile, the size of the occupancy training dataset is
also limited to a small amount, considering the adaptation to
changes in occupants' behavior. Overall, the computing time of the
proposed DCC was adequate for this study.

6. Discussion and conclusion

In this paper, we presented a control strategy with learning
capacity for demand-driven sensible cooling and implemented it in
six offices of a case study building in Singapore. Test results of the
control strategy have been provided and analyzed in this paper.

The proposed demand-driven control can not only be used for
sensible cooling systems but also can be implemented into heating
systems and ventilation systems. For demand-driven heating, the
control process is exactly the same as the proposed cooling control,
only using different temperature setpoints for the comfort mode
and the setback mode. For the ventilation control, time-dependent
setpoints can be employed to regulate the room humidity or CO2
level.

The following subsections draw out the discussion and conclu-
sions of this work and lay out areas of future work.

6.1. Energy savings potential

The DCC employed in this work can automatically adapt to
current and future occupancy states of different offices for saving
energy efficiently and maintaining room temperature during the
occupied periods with similar performance as the baseline system.
The results showed that the DCC contributed to reducing overall
sensible cooling energy requirements by 20.3% over the test period.

Our experimental result indicates that energy use in the office
spaces of the case study building could be reduced by decreasing
unnecessary sensible cooling requirements during non-occupied
hours. The results also showed that achieved energy savings were
inversely correlated to occupancy rates within the individual case
study offices.

For example, occupancy rates during both baseline and DCC
tests are low in the single person office P3, as shown in Fig. 11.
During the baseline test, this office had a lower occupancy rate,
though a comfortable temperature level was maintained
throughout the entire daily air-conditioning system operating
period. In contrast to the baseline test, whilst this office was
occupied with a higher occupancy rate in the DCC test, the DCC
made the sensible cooling adapt to its occupancy behavior. In doing
so, the DCC test attained an energy reduction of 36% in this office.
Similar energy savings were attained in the other single person
offices with low occupancy rates (i.e. P1, P2, and P4). Generally,
these findings are supported by related studies in the building
sciences. For instance, Masoso et al. [31] reported that energy waste
in commercial buildings was mainly caused by equipment kept in
operation during unoccupied periods. The DCC has addressed this
by ensuring that the operation of sensible cooling in the case study
building follows the stochastic presence of occupants.

Meanwhile, even though the DCC achieved high control accu-
racy for two multi-person offices, the energy savings potential, in
this case, is limited by when experiencing high occupancy rates.
During the DCC test, office M2 displayed even higher energy con-
sumption than the baseline as the occupancy rate increased further.

6.2. The control performance

The average control accuracy of the DCC based on the predicted
occupancy data attained in the six offices was 88.1% according to
specified criteria. Meanwhile, the controlled room temperatures
above assumed thermal tolerance (i.e. 23.5 �C) during occupied
time only represented 0.5% of the total occupied durations, and all
were only short occupied slices (i.e. less than 17 min). Under the
tested conditions, we did not observe that the occupants used the
HMI to change the setpoints except one situation described in
Section 5.3.

Two of reviewed systems [12,13] illustrated the control accuracy
based on the forecasted occupancy, as presented in Section 1. In
contrast to their research on residential buildings, our control
strategy attained a similar control performance for demand-driven
cooling of office spaces. To further improve the control perfor-
mance, more learning algorithms such as [32,33] can be explored
and embedded into the current strategy to analyze occupancy
patterns for the occupancy learning and prediction module, and
more statistical analysis can be integrated into the RBC module.
These will be explored in our future development of the DCC
strategy.

6.3. Computation time

The assessment of the computation time illustrated in this paper
gives a rough view of the computing distribution across the DCC
structure based on our experimental system and raises possibilities
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to reduce the computational time of the DCC process further in the
development and engineering phase.

The communication between the workstation that the DCC al-
gorithm has been coded and the BMS computer is only evoked by
the client side (i.e. the DCC workstation) for reading sensor data
and sending control commands with the REST API communication.
Therefore, the time step of the DCC was defined to 1 min to make
the sensible cooling system respond quickly to changes in occu-
pants' behavior in the research phase. The average computation
time in each cycle is calculated for evaluating the possibility of
future applications. For the proposed DCC, the average computation
time in one control cycle was 20.5 s for the six offices. That is, the
sensible cooling control in each office only required about 3.4 s.
Adding demand-driven ventilation into the current DCC would not
require more computation time.

Due to limits of computing and memory, complicated algo-
rithms may be difficult to integrate into local controllers [34]. For
controlling a much larger number of offices in commercial build-
ings, it is possible to embed such DCC into a computer-based BMS
itself working as an application function. Collecting sensor data
from the BMS, and transmitting it to the DCC via REST API, took 59%
of the total computational time in the undertaken experiment.
Once the DCC is integrated into the BMS workstation, the 1-min
inter-computer data sampling process would no longer be needed.
Further computational savings could be found by increasing the
time resolution of the occupancy learning and prediction cycle and
optimizing the local data reading process. The best values of them
need to be evaluated in the development and engineering phase.

6.4. Occupancy detection

In this study, movement signals are only transformed to occu-
pancy data with a binary format, and the proposed DCC makes the
cooling operation adapt to such binary behavior. In a room with a
larger maximum capacity (e.g. big open office) compared to our
case study rooms, there are usually more than two motion sensors.
In such a space, each motion sensor only monitors movements
occurring in a designated floor area, and multi-motion signals
collected from this space can be processed to discrete values to
represent what proportion of the room is occupied or what pro-
portion of people are in the room. This data can be used to infer
thermal loads generated by occupants and their personal equip-
ment for the control of PIBCVs, VAV boxes or other control com-
ponents of an air-conditioning system.

6.5. Limitations of the experiments

The primary purpose of the commercial building used in this
study is not academic research, so the baseline control and DCC
were implemented in the 6 offices with 10 occupants over 2
months with 42 weekdays. Ideally, such an experiment would be
beneficial to be conducted over a longer time horizon of several
months. The small number of the case study offices and the short
experimental time may restrain the universality of the results
presented in this paper. However, even in this small experimental
scale, the offices assessed by our experiment captured large varia-
tions in occupants' behaviors across various private offices and
multi-person offices. This was sufficient to illustrate a correlation
between energy savings potential and occupancy rates as well as
demonstrate how a demand-driven control strategy could reduce
building energy consumption in practice.
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