Applied Energy 256 (2019) 113940

journal homepage: www.elsevier.com/locate/apenergy

Contents lists available at ScienceDirect

Applied Energy

Using data from connected thermostats to track large power outages in the @ M)

United States

Alan Meier”, Tsuyoshi Ueno, Marco Pritoni

Lawrence Berkeley National Laboratory, USA

Check for
updates

HIGHLIGHTS

® When Internet-connected thermostats go “dark”, then a power outage probably occurred.
® Power outages caused by nine major weather events were compared to disconnected thermostats.
® The network of thermostats has a geospatial resolution similar to that of utility SCADA devices.

® Cable TV nodes could provide sub-distribution level voltage sensing at low cost.
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The detection of power outages is an essential activity for electric utilities. A large, national dataset of Internet-
connected thermostats was used to explore and illustrate the ability of Internet-connected devices to geospatially
track outages caused by hurricanes and other major weather events. The method was applied to nine major
outage events, including hurricanes and windstorms. In one event, Hurricane Irma, a network of about 1000
thermostats provided quantitatively similar results to detailed utility data with respect to the number of homes
without power and identification of the most severely affected regions. The method generated regionally uni-
form outage data that would give emergency authorities additional visibility into the scope and magnitude of

outages. The network of thermostat-sensors also made it possible to calculate a higher resolution version of
outage duration (or SAIDI) at a level of customer-level visibility that was not previously available.

1. Introduction

Even brief interruptions in the supply of electric power to con-
sumers can lead to significant economic and human costs [1]. For this
reason utilities devote considerable resources to rapid detection and
assessment of power outages. This situation is especially true in de-
veloped countries; for example, customers in most European countries
experienced fewer than two hours without power in 2016 [2].

Electricity outages cost U.S. consumers roughly $44 billion in 2015
[3]. In spite of continuing efforts to improve the grid, the frequency and
duration of power outages has not appreciably fallen in the last two
decades and may have in fact risen [4,5,3]. Steps are being taken to
improve the reliability of the grid at points of generation, transmission,
and distribution [6]. However, after an outage occurs, the key to
minimizing economic consequences of an outage is to quickly become
aware of its presence and scope. This information enables the utility
and other emergency authorities to most efficiently mobilize resources

to restore services [7].

Real-time outage detection remains an essential activity for electric
utilities. Most utilities employ an outage management system (OMS) to
deal with these events [8]. The OMS draws information from super-
visory control and data acquisition (SCADA) devices, customer tele-
phone calls, smart meters, social media, and other sources [9]. About
half of U.S. residential customers are connected to smart meters (or
advanced metering infrastructure—AMI). Modern smart meters detect
outages and transmit a “last gasp” signal at the time of the outage,
which is especially valuable in alerting the OMS of an outage and
providing a location. However, the transmission of the last gasp signal
is not assured. These signals will not reach the OMS, or may be delayed,
if the mesh network is compromised [10].

Often the challenge for an OMS is not to obtain data but to avoid
congestion from superfluous or duplicate data [11]. Local gatekeepers
are often established to reduce duplicate notifications, combine mes-
sages, or verify outages through pinging. Utilities still rely heavily on
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customer calls to detect outages. One survey of utilities in 2015 [12]
claimed that customer calls were still the primary source of outage
notifications, far higher than SCADA or smart meters. Only 16 percent
of utilities used their smart meters as the primary source of power
failure alerts on “blue-sky” days and 12 percent during storms. Hand-
ling excessive customer calls is an expensive problem, too. For example,
30 percent of customers call more than once during an outage because
they do not know when their power will be restored [13].

Various services have emerged to aggregate the OMS data and
present a national picture of outages, often in near real time. One ser-
vice [14] compiles OMS data from over 600 U.S. utilities and offers
outage information to customers at many different levels of geo-
graphical and historical resolution. The quality of this information is, of
course, only as good as the OMS data supplied to it.

The drawbacks and weaknesses of current outage detection systems
have stimulated the development of new techniques to identify outages.
These approaches are notable for their diversity, including satellite
imagery, mobile telephones, social media, and status of Internet con-
nections. Curiously, most of these experiments have taken place outside
of the traditional utility environment. These explorations are briefly
described below.

Satellite imagery has been proposed as means to identify large
outages [15] and used to show the impact of power outages caused by
Hurricane Sandy. Similar assessments were undertaken after the Fu-
kushima nuclear disaster [16]. The approach involves comparison of
satellite images of the affected area to baseline photographs. The
drawbacks of this approach are low resolution, delay (until night), and
susceptibility to cloud cover.

Mobile telephones have been used as outage sensors [17]. This
approach relies on the fact that a smartphone can detect a power outage
based on its own power state. A smartphone will change its state when
plugged into a charger. If power is interrupted then the smartphone will
detect a change in state. It can further distinguish between a benign
unplugging and a power outage through filters and other inputs. After
downloading a special app, the telephone can notify a central entity of
an outage. The system was tested in Kenya.

Sun et al. [18] and Hultquist et al. [19] tracked social med-
ia—Twitter—and, through semantic analysis of content, identified
messages related to power outages. This methodology enabled the
outages to be identified and geographically located.

Most devices connected to the Internet rely on grid-supplied power
because the data flows through a Wi-Fi router and a modem. When an
outage occurs, the devices lose their network connection and will go
“dark,” that is, the service provider no longer receives data. Thus, loss
of a network connection can serve as an implicit outage sensor.
Shulman [20] proposed a means of identifying network/power outages
during periods of intense storms. The method determines connectivity
by pinging a representative sample of residential IP addresses in the
region affected by the storm. When the pings were not returned (and
after various error filters were applied), the connection was assumed to
be down. This procedure could determine the extent of failed connec-
tions but could not distinguish between network and power outages.
Heidemann et al. [21] employed a similar approach to investigate the
frequency and scope of Internet outages. He found that a significant
fraction of Internet outages in his dataset could be attributed to power
outages, notably those related to Hurricane Sandy.

The “industrial Internet of Things” (IloT) was used by Simoes et al.
[22] to track power outages in Portugal. Many commercial operations
have networks connecting hundreds—or even thousands—of geo-lo-
cated devices, including automated cash dispensers, mobile telephone
towers, and building security systems. These devices are regularly
polled, so when they fail to respond, a power outage can be inferred.
The electric utility created an open, Internet-based communication
channel, for customers to send outage events. A specially designed
program then transforms the submissions into a structure that can
provide situational awareness to the grid operator.
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The research summarized above demonstrated that a range of net-
works can track power outages. At the same time, it has been demon-
strated that failures in the power grid lead to interruptions in the
Internet. In this paper we explore the ability of Internet-connected
devices to act as a highly distributed network of electricity grid sensors
and to provide meaningful information to grid operators, emergency
authorities, and policymakers.

2. The connected thermostat dataset

The network of Internet-connected thermostats (CTs) offers many of
the same features as the IIoT described above. These thermostats
transmit data via the Internet to a service provider as frequently as
every five minutes. When a thermostat goes dark, the most likely cause
is a power outage. The thermostats are tracked in a consistent manner,
spanning utility service areas, states, and regions. This broad coverage
is important in the United States because many outages involve mul-
tiple utilities and grid operators. In the United States, there are at least
six million installed CTs, and the population is growing at a rate of
about 20 percent per year.

Thermostat data were obtained through the ecobee Donate Your
Data (DYD) program [23]. Ecobee sells and manages CTs primarily in
North America. The DYD program enables users to anonymously donate
their operation data for research use. User data are gathered in servers
managed by ecobee. Every fifteen minutes, the ecobee thermostat re-
cords the thermostat setpoints, the actual inside temperature, relative
humidity, and HVAC runtime. Some models record occupancy and
temperatures in other rooms. These data are collected by the thermostat
and then transmitted via Wi-Fi and the Internet to an ecobee server.

Ecobee shares limited metadata about each participating DYD home
with researchers, including the home’s location (city and state or pro-
vince), its approximate floor area, and age. Ecobee also shares outside
temperatures from nearby weather stations. Weather information was
not used in this analysis but may be useful for future outage-related
research.

The DYD program began in 2015, and the number of participants
increased rapidly. Fig. 1 shows the monthly trend of the number of
participants (and devices) in this study. By late 2018, about 60,000
homes participated in the DYD program. This data collection program is
orders of magnitude more detailed than anything before it. For ex-
ample, the Residential Energy Consumption Survey (RECS) [24] is the
only national program collecting similar data. RECS surveys about 5600
homes once every four years. The survey relies on consumer responses
for thermostat settings, and monthly utility bills are obtained from the
local utility. The DYD dataset can provide extraordinary insights into
heating and cooling behaviors in North American homes. For example,
Huchuk et al. [25] used data from over 10,000 DYD thermostats to
investigate how different climates, seasons, and utility tariffs affected
the occupants’ selection of indoor temperatures.

The DYD data used in this study begin in January 2015 and end in
September 2017. The number of participating homes climbed during
this period from 1000 to 20,000. Fig. 1 shows the rising number of
thermostats during the study period. The numbers in the ten largest
states are broken out. Note that about half of the thermostats are lo-
cated in the remaining states. The DYD homes appear to be re-
presentative of the national building stock. We verified that the homes
in the DYD homes closely resembled the subset of single-family homes
in the RECS dataset by comparing home size and number of occupants
[26].

Each DYD participant reported the city in which the thermostat was
located. The city was then mapped into its respective county. This level
of geospatial precision appeared reasonable. A county-level resolution
also facilitated later comparison with other data sources, such as census
and utility service maps. Note that ecobee could apply greater geos-
patial precision in the future but it limited location data in the DYD
dataset to cities so as to preserve customer confidentiality.
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Fig. 1. Monthly trend of participating thermostats by state.

The files were cleaned to eliminate a range of defects, such as dis-
continuities caused by daylight savings time and missing data. Some
missing data also resulted from the procedures ecobee used to anon-
ymize the DYD participants and transfer files to researchers. The gaps
appeared in a mostly random manner. The lost data represented less
than 5 percent of the overall dataset; however, the resulting gaps were
difficult to distinguish from power or network outages. (Missing data
rates have declined below 1 percent in more recent data transfers.)

3. Tracking power outages caused by Hurricane Irma

Hurricane Irma struck the Southeastern United States on September
8-24, 2017 and caused many deaths, injuries, and extensive economic
damage. The continental path of Hurricane Irma is shown in Fig. 2. The
hurricane passed through at least four states, which were serviced by
four large electric utilities and many smaller utilities [27].

The geospatial impact of Hurricane Irma is revealed in the max-
imum fraction of inactive thermostats observed in each county in Fig. 3.
White areas represent counties with fewer than 30 thermostats. (These
are typically counties with fewer people.) The most seriously affected
counties were in southwest Florida, but high outage fractions also oc-
curred in counties as far north as central Georgia, reflecting severe local
conditions or less storm-resistant electricity networks. This figure cap-
tures the scale and complexity of Irma’s impact in four states and in the
service areas of many different utilities.

Fig. 2. Path of Hurricane Irma (September 8-24, 2017). Each dot corresponds
to one day. The color indicates Irma’s severity.

The number of affected customers in each county was extrapolated
from the fraction of dark thermostats in each county and the number of
homes in that county. For example, if 20 percent of thermostats were
dark and the county had one hundred thousand homes, then 20,000
customers were estimated to be without power. The number of custo-
mers without power at 15-minute intervals is shown in Fig. 4. Using this
method of extrapolation, over five million homes were without power
at the peak on September 11. Fig. 4 also shows that restoration of power
took many days and that over two million customers still lacked power
five days after the hurricane hit.

Each county was affected differently by Hurricane Irma, both in
severity and timing. Fig. 5 shows the time sequence of thermostat
outages by county. (Counties with fewer than 30 thermostats were not
plotted.) The counties are stacked by increasing latitude. Since Hurri-
cane Irma traveled south to north, the lag in outages caused a small but
distinct time shift in each county’s peak. In addition, the magnitude of
the peak and total impact diminished as Irma moved north.

4. A power outage caused by a wind storm

A severe wind storm struck the middle west United States on March
8, 2017, which led to widespread power outages in Michigan and
neighboring states [28]. The storm was much less severe than Hurri-
cane Irma, and the region has a sparser network of DYD thermostats
compared to Florida; nevertheless, the outage is still clearly displayed
and its geospatial impact can be inferred. Fig. 6 shows the maximum
fraction of inactive thermostats in each county during the event. Only
counties with more than 30 DYD homes are displayed. The extent of the
storm is evident, from Wisconsin to central Indiana and Ohio. At least
two different grid operators participate in the control of the affected
region, and more than five electric utilities serve this area, each with its
own outage management system. A unified sensing network, with
consistent outage metrics, was not possible until the Internet-connected
thermostats became available.

Fig. 7 shows the progression of outages over time. It displays the
fraction of off-line thermostats for the six counties with the largest
number of DYD homes. They are stacked from south to north (similar to
that in Fig. 3 for Hurricane Irma). Newspaper reports suggest that the
storm traveled from northwest to southeast, but this is not evident from
the DYD data, possibly because it traveled so rapidly. On the other
hand, the orientation of the storm, that is, northwest to southeast, is
clear.
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Fig. 3. Maximum fractions of inactive thermostats for each county (September 8-24, 2017).

5. Power outage metrics from connected thermostat data

The CT data also makes it possible to calculate standardized metrics
related to outages. The number of customer outage-hours was estimated
for each county affected by Hurricane Irma. This is analogous to the
System Average Interruption Duration Index (SAIDI), except that CT
data can provide higher spatial and temporal resolution than is nor-
mally available from SCADA data and other sources. Results are shown
geospatially in Fig. 8 and sorted by declining values in Fig. 9. With this
higher resolution, it becomes possible to more clearly distinguish

Customers affected[Million]

.0.4’ - ‘1'1

Sep
2017

between areas where many customers experienced brief outages and
areas where a few customers experienced long outages. (The SAIDI
metrics would be the same, but the type of disruption will be different.)
For example, higher outage-hours per customer will lead to more food
spoilage in refrigerators or health impacts among vulnerable popula-
tions. Therefore, high-resolution identification of outage-hours can be
an important indicator of disproportionate economic damage caused by
power outages in specific neighborhoods, communities, or counties.
The figures show that, while southwestern Florida experienced the
highest outage rates, southeastern Florida experienced the greatest

'1‘8. - ’2‘5.

Oct

Fig. 4. Customers affected by Hurricane Irma in the four most affected states.
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Fig. 5. Transition of power outage rates for each county with more than 30 thermostats.

number of customer outage-hours. The higher outage-hours mostly re-
flects the greater population in southeastern Florida (principally, -
Miami).

Utilities are required to submit Form OE-417 when a significant
outage occurs [29]. The U.S. Energy Information Administration (EIA)
lists 12 criteria that require a utility to report an outage, one of which is
loss of service to 50,000 or more customers for one hour or more. These
reports are displayed in Fig. 10a. In some cases other sources estimated
the number of affected customers, and they are also shown in Fig. 10a
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and b. These estimates were diverse, inconsistent, and often made prior
to a retrospective evaluation. For example, many utilities estimated
affected customers during the outage itself and did not submit updates.
The techniques described for Hurricane Irma and the Michigan wind
storm were applied to nine major power outages. The number of con-
sumers affected and total consumer outage-hours were estimated (see
Fig. 10a and b). These values were compared to utility submissions to
the EIA for the same events.

The three sources of outage information tracked closely with respect
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to ranking but differed with respect to magnitudes of affected customers geo-spatial impacts, chronology, and intensity of an outage. It provides
and outage-hours. Hurricane Irma was the largest outage, regardless of a regional outage perspective based on a consistent sensor network and
metric and source of information. methodology.

6. Discussion

6.1. Using Internet-connected devices as power outage sensors

We demonstrated the capability of a network of Internet-connected,
geo-located devices to track power outages. The approach reveals the
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into granular metrics suitable for emergency management and policy
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during an event. This number is often uncertain, especially when the
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Table 1
Outage comparison for major and ordinary events in 2017.
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EIA

DYD

Definition of major event
Customer outage-hours caused by major events (millions) 786
Customer outage-hours caused by ordinary events (millions) 262

Utility Reports from Form OE-417 Filings

Outages Revealed by Inspection of DYD Data
645
N.A.

severely affected areas. A SAIDI with much higher geospatial resolution
pinpoints the overall intensity of the outage event. The intensity of
Hurricane Irma, for example, becomes more evident when comparing
its outage-hours to those of Hurricane Matthew. A geo-spatial break-
down of customer outage-hours by county can assist emergency au-
thorities in locating the most severely impacted areas. Insurance com-
panies would find such data useful when evaluating claims.

6.2. Uncertainty of a grid sensor network comprised of Internet-connected
devices

New types of uncertainties arise with this method of estimating
outages. These uncertainties fall into two categories: (1) reliability of
the network disconnection as a proxy for an outage sensor, and (2)
validity of extrapolations from the population of DYD homes to the
general population. Some of the uncertainties are described below.

The underlying assumption behind our approach is that, when the
service provider no longer receives information from a thermostat, a
power outage has occurred. But there are other explanations for a
thermostat going dark that do not involve a power outage. Possible
explanations include the following:

- The Internet network fails. Data networks have more interruptions
than power networks, [30] but these interruptions are typically brief
and other features are present to mitigate their impact [31]. Large
network failures can be identified and filtered out.

- The occupant switches off the thermostat. This happens sometimes
during periods of mild weather when no heating or cooling is re-
quired.

- The occupant unplugs or switches off the modem. This happens rarely
and briefly, such as when the occupant moves the modem.

These types of network interruptions will occur at a low, continuous
level in mostly random ways. We therefore conclude network inter-
ruptions not caused by power outages introduce a low-level “noise” to
the DYD or other thermostat data. These false signals will overstate the
frequency of outages. This uncertainty is small but needs to be quan-
tified through further research and algorithms developed to minimize
these effects [31].

The number of affected customers relies on an extrapolation from a
small number of homes with connected thermostats. Since the highest
level of geo-spatial resolution is the county, power outages affecting
only a fraction of a county will give ambiguous results. In Florida, the
extrapolation is based on only 1204 DYD thermostats (less than
0.02 percent of Florida’s homes). Reliance on such a small sample in-
troduces uncertainty into the county, state, and regional outage esti-
mates, especially if the DYD homes differ from the rest of the popula-
tion.

We checked to determine if DYD homes were significantly different
from the national stock of single-family homes by comparing the find-
ings from the most recent Residential Energy Consumption Survey [24]
to the DYD homes. The RECS (single-family) and DYD homes were si-
milar in floor area, age, and number of occupants. We concluded that
the DYD homes were similar enough to the national stock to not cause
significant distortions.

Other differences might arise at the county level. For example, some
counties may have higher fractions of apartments, few of which are in

the DYD dataset (so far). The extrapolation may also be misleading in
counties with a large fraction of electricity consumed by industrial or
commercial sectors. The problem will probably become less important
after aggregation; still, further research would be useful.

The accuracy of this sensor network has not been compared with
ground truth. A verification would require finding a region meeting
many criteria, including the following:

- A cooperating utility whose residential customers are equipped with
smart meters that store and transmit outage information

- A high concentration of homes with CTs

- Several power outages during the study period

- Customer permissions to release both utility and CT data

These criteria are logistically challenging. Moreover, smart meters
have their own reporting shortcomings, so they may be an imperfect
ground truth. Nevertheless, two reality checks were performed to verify
the accuracy of our approach.

In the first verification, the number of customers suffering outages
during Hurricane Irma were compared using DYD data and detailed
estimates from the Florida Public Service Commission. The Florida
Public Service Commission estimated the number of affected customers
by tabulating the number of customers known to be on each failed
subsystem and feeder line having SCADA. Some smaller utilities are not
included. This approach offers a means to estimate outage impacts at a
highly granular level (but does not rely on smart meters). Both methods
registered peak outages within a few hours of each other. The utilities
reported slightly more customers without power at the peak than were
extrapolated from DYD data: 6.2 million versus 5.6 million custo-
mers—that is, a difference of roughly 10 percent.

A second comparison was made between the total number of cus-
tomer outage-hours from the five largest events in 2017 (see Fig. 10b)
to an estimate of national outage-hours based on EIA data. Table 1
summarizes the results.

Table 1 shows that the utilities reported 786 million outage-hours to
the EIA in 2017. This compares to 645 million outage-hours revealed by
inspection of the DYD data. Thus, the DYD data captured roughly
82 percent of the reported major outages. While not equal, this com-
parison shows that the two very different approaches yield roughly
similar results. Equality should not be expected because some utilities
did not report their outages. On the other hand, the DYD outage-hours
included all utilities but are based on only the five largest outages in-
vestigated in this study. With further improvements in data processing,
connected devices could be an accurate means of estimating outage-
hours from major outage events.

Comparisons of ordinary outage events are impossible with current
techniques. The DYD data contain too much “noise”—missing data,
network outages, etc.—to observe power outages that occur in small
regions and at very low frequencies. Future improvements in algo-
rithms should be able to better distinguish actual power outages from
other reasons that the connected device is not transmitting data, but the
noise can never be completely eliminated.

6.3. National grid reliability metrics using Internet-connected devices

Utilities and governments have invested more than 32.5 billion
dollars between 2008 and 2017 on improvements to the grid and expect
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Table 2
Populations of network-connected sensors.

Network-connected Device/Sensor Estimated Sensor Population

(millions)
Cable TV boxes and Internet modems ~ 80
Internet-connected thermostats ~6
Bank automated teller machines (ATMs) 0.5
Cable TV and Internet network nodes 0.25
SCADA-equipped substations 0.07
Ecobee DYD thermostats (late 2018) 0.06

to invest much more [32]. A comprehensive and consistent set of me-
trics is needed to gauge the success of these and future investments,
some of which must address power outages. The EIA compiles utility
reports of key outage metrics related to frequency and duration of
outages, the System Average Interruption Frequency Index (SAIFI), and
SAIDI. Only 30 percent of the utilities typically file reports, but these
are the largest and therefore represent a much larger fraction of total
customers. Each utility employs slightly different procedures and as-
sumptions in its calculation, though utilities serving more than
50 percent of U.S. customers claim to follow the IEEE standard 1366
[3,33]. Our method of measuring outages with Internet-connected de-
vices makes possible a simple, consistent procedure to collect national
outage data.

The network’s geospatial resolution and accuracy depends on the
number and distribution of its sensors. Table 2 lists our estimates of the
populations of various geospatially linked, networked devices that
could serve as grid sensors. An important feature of these networks is
the number of units linked to a single, national entity. A single entity
simplifies collection and processing of consistent, national, metrics.
Consumer privacy also can be more easily maintained when a single
entity is responsible. Cable TV and broadband customers represent the
largest potential network, at about 80 million subscribers [34]. About
one-third of these customers are served by a single national provider
(Comcast). We estimate that the population of Internet-connected
thermostats exceeds six million. These devices are offered by several
providers, some of whom already serve more than a million households.
Automated teller machines are connected through private networks and
the Internet but are less frequently served by a central provider.

Neighborhoods of 100-300 homes served by residential cable TV
systems are typically connected to neighborhood nodes. These nodes
are especially attractive grid sensors because they have uninterruptible
power supplies [35] and can therefore actively signal to the service
provider when a loss of grid power occurs. In addition, the cable nodes
can be associated with precise locations that are not subject to customer
privacy constraints.

About 20,000 households participated in ecobee’s DYD program in
2017 and more than 60,000 are participating in 2018. SCADA-equipped
substations are listed for comparison [36]. This is typically the geos-
patial extent to which a utility has real-time visibility when smart
meters are not configured to provide real-time data. These data may be
fed into grid authorities but are not fed into a national entity.

Table 2 shows that several existing sensor networks could provide
equal or higher resolution and geospatial coverage of outages than
substations equipped with SCADA devices. The DYD network has lower
resolution than substations, but the number of participating thermo-
stats will likely overtake substations in 2019. The DYD program illus-
trates how quickly a network of Internet-based sensors can be estab-
lished and provide actionable information. The network can also be
built relatively inexpensively where it can piggyback on an existing
infrastructure. Ultimately, the network of cable TV nodes appears to be
the most attractive because it offers high geospatial resolution and
active sensing. The technical specifications of cable nodes are stan-
dardized so, in principle, an integrated national outage monitoring
system could be created by linking output from the major cable
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providers.

The most obvious users of this information are entities responsible
for grid security and resiliency, utilities, emergency management au-
thorities, and insurance companies; however, there may be other
commercial applications of high-resolution outage data. For example, a
service provider could generate an “electricity reliability score” at the
neighborhood level, similar to the “walkability score” now available for
some neighborhoods [37]. This information could affect housing pur-
chases because persons relying on medical equipment or using sensitive
electrical equipment would consider either avoiding these areas (or
investing in back-up generation). A service provider could also publish
reliability scores for cities or whole utility service areas.

6.4. Future work

Future research might advance in at least three directions. First, the
viability of the method needs to be demonstrated in real time. A utility
could partner with a provider of Internet-connected devices to obtain
real-time outage detection services. Does this network of sensors pro-
vide additional visibility into outages and provide value beyond ex-
isting outage management systems? Smaller studies might also permit
detailed verification (and improvement) of the algorithms used to dis-
tinguish between network outages (and other reasons for the thermo-
stat not communicating) and power failures.

By 2021, this network of DYD thermostats will exceed the number
and geospatial coverage of all utility-managed SCADA systems in the
United States. Further research is needed to determine if the DYD da-
ta—or an alternative network—can complement conventional utility
data gathering methods as means of uniformly tracking long-term im-
provements in grid reliability.

Finally, Internet-connected devices could serve as even better grid
sensors. For example, the nodes in cable TV networks appear especially
attractive. Their capabilities deserve additional investigation and
testing.

7. Conclusions

A new method for detecting power outages was introduced. The
method relies on frequent communications between Internet-connected
devices in homes—in this case, thermostats—and service providers. A
power outage severs the communication link to these devices, which is
quickly noticed by the providers—sometimes in fewer than five min-
utes.

This work demonstrated that a network of Internet-connected
thermostats could serve as power outage sensors. The approach was
applied to nine major outage events, including hurricanes and wind-
storms. For Hurricane Irma, thermostat-based outage maps and impacts
were compared to detailed utility data. The network of about 1000
thermostats provided quantitatively similar results with respect to the
number of homes without power (and then reconnected) and most se-
verely affected regions.

The DYD data captured roughly 82 percent of the outage-hours re-
ported by utilities for major events in 2017. With further improvements
in data processing, connected thermostats—or other connected devi-
ces—could be an accurate means of estimating outage-hours from
major outage events and tracking these events at a national scale in a
uniform manner.

Detection of ordinary outage events at a national scale is not yet
feasible with current techniques. The DYD data still contain too much
noise to observe power outages that occur in small regions and at very
low frequencies. Future improvements in algorithms should be able to
better distinguish actual power outages from other reasons that the
connected devices are not transmitting data, but the noise can never be
completely eliminated.

This method generated regionally uniform outage data that would
give emergency authorities better visibility into the scope and
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magnitude of outages. This information is not sufficient for utilities to
manage their system—SCADA data and other sources are still essen-
tial—but it could help them prioritize aid to the most severely affected
communities. A separate monitoring system may also give a utility
visibility into grid status when the conventional SCADA data are
compromised through cyber disruption.

Declaration of Competing Interest
None.
Acknowledgements

The authors deeply appreciate the cooperation of ecobee, Inc., and
its anonymous customers who participated in the Donate Your Data
program. The authors also wish to thank Joe Eto, Brent Huchuk, and
Curtis Snyder for their valuable comments, in addition to the extensive
and constructive comments by the anonymous reviewers. This research
used data from ©OpenStreetMap contributors for visualization. Dr.
Ueno was supported by the Central Research Institute of the Electric
Power Industry (Japan). This research was supported by the Grid
Modernization initiative of the U.S. Department of Energy as part of its
Grid Modernization Laboratory Consortium, a strategic partnership
between the U.S. Department of Energy (DOE) and the national la-
boratories to bring together leading experts, technologies, and re-
sources to collaborate on the goal of modernizing the nation's grid.

References

[1] de Nooij M, Koopmans C, Bijvoet C. The value of supply security: the costs of power
interruptions: economic input for damage reduction and investment in networks.
Energy Econ 2007;29(2):277-95.

Council of European Energy Regulators. “CEER Benchmarking Report 6.1 on the
Continuity of Electricity and Gas Supply,” Council of European Energy Regulators,
Brussels, C18-EQS-86-03; Jul. 2018.

LaCommare KH, Eto JH, Dunn LN, Sohn MD. Improving the estimated cost of sus-
tained power interruptions to electricity customers. Energy 2018;153:1038-47.
Hines P, Apt J, Talukdar S. Large blackouts in North America: historical trends and
policy implications. Energy Policy 2009;37(12):5249-59.

Larsen PH, LaCommare KH, Eto JH, Sweeney JL. Assessing changes in the reliability
of the U.S. Electric Power System; Aug. 2015.

Kroposki B, Skare P, Pratt R, King T, Ellis A. Grid modernization laboratory con-
sortium - testing and verification. In: 2017 Ninth Annual IEEE green technologies
conference (GreenTech); 2017. p. 238-45.

Guikema SD, Nateghi R, Quiring SM, Staid A, Reilly AC, Gao M. Predicting hurri-
cane power outages to support storm response planning. IEEE Access
2014;2:1364-73.

Mousavi MJ, Kang N, Kazemzadeh H, McCarthy C. Automatic restoration systems
and outage management. In: Smart grids: advanced technologies and solutions, 2nd
ed., Boca Raton, Florida: Taylor & Francis; 2017.

Kelley R, Pate R. Mesh networks and outage management. Elster, Mainz-Kastel
(Germany), WP42-1002A; Jun. 2009.

Liao Y, Weng Y, Tan C-W, Rajagopal R. Fast distribution grid line outage identifi-
cation with $\mu$PMU. arXiv:1811.05646 Cs Stat; 2018.

Garlapati S, Kuruganti T, Buehrer MR, Reed JH. OTRA-THS MAC to reduce power
outage data collection latency in a smart meter network. In: 2014 International
conference on computing, networking and communications (ICNC); 2014. p.
776-81.

Bridge Energy Group. “BRIDGE Energy Group survey shows customer calls, not
smart meters, still primary source of power outage notification for utilities,”

[2]

[3]
[4]
[5]

[6]

[71

[8]

[91
[10]

[11]

[12]

10

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

Applied Energy 256 (2019) 113940

BRIDGE Energy Group; Apr. 28, 2015.

Chen P-C, Dokic T, Kezunovic M. The use of big data for outage management in
distribution systems. International conference on electricity distribution (CIRED)
workshop. 2014.

Bluefire Studios LLC, “PowerOutage.US,” 2019. [Online]. Available: < https://
poweroutage.us/ > . [Accessed: Apr. 6, 2019].

Min B, O’Keeffe Z, Zhang F. Whose power gets cut ? Using high-frequency satellite
images to measure power supply irregularity. The World Bank 2017;8131.

Earth Observation Group, “Japan Earthquake & Tsunami March 2011,” Earth
Observation Group, Mar. 2011. [Online]. Available: < https://ngdc.noaa.gov/eog/
data/web_data/japan/japan.html > . [Accessed: Oct 2, 2018].

Klugman N, Rosa J, Pannuto P, Podolsky M, Huang W, Dutta P. Grid watch: map-
ping blackouts with smart phones. In: Proceedings of the 15th workshop on mobile
computing systems and applications, New York, NY, USA; 2014. p. 1:1-1:6.

Sun H, Wang Z, Wang J, Huang Z, Carrington N, Liao J. Data-driven power outage
detection by social sensors. IEEE Trans Smart Grid 2016;7(5):2516-24.

Hultquist C, Simpson M, Cervone G, Huang Q. Using nightlight remote sensing
imagery and twitter data to study power outages. In: Proceedings of the 1st ACM
SIGSPATIAL international workshop on the use of GIS in Emergency Management,
New York, NY, USA; 2015. p. 6:1-6:6.

A. Schulman and N. Spring, “Pingin’in the rain,” in Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, 2011, pp. 19-28.
Heidemann J, Quan L, Pradkin Y. A preliminary analysis of network outages during
hurricane sandy. University of Southern California, Information Sciences Institute;
2012.

Simoes J, Blanquet A, Santos N. Near real-time outage detection with spatio-tem-
poral event correlation; 2016. p. 3.

Ecobee Inc., “Donate Your Data,” Ecobee, 2018. [Online]. Available: < https://
www.ecobee.com/donateyourdata/ > . [Accessed: Oct 1, 2018].

EIA, “Residential Energy Consumption Survey (RECS),” Energy Information
Administration, Washington, D.C.; 2015.

Huchuk B, O’Brien W, Sanner S. A longitudinal study of thermostat behaviors based
on climate, seasonal, and energy price considerations using connected thermostat
data. Build Environ 2018;139:199-210.

Meier A, Ueno T, Rainer L, Pritoni M, Daken A, Baldewicz D. What can connected
thermostats tell us about American heating and cooling habits? In: ECEEE 2019
Summer Study, Hyéres, France; 2019.

Energy Information Administration, “Hurricane Irma cut power to nearly two-thirds
of Florida’s electricity customers - Today in Energy - U.S. Energy Information
Administration (EIA),” Today in Energy, Sep. 20, 2017. [Online].

Available: < https://www.eia.gov/todayinenergy/detail.php?id = 34232# > .
[Accessed: Aug 2, 2018].

Bartkowiak D. “Michigan Power Outage 2017,” Click on Detroit, Mar. 2017.
[Online]. Available: < https://www.clickondetroit.com/michigan-power-outage-
2017 > [Accessed: Oct. 5, 2018].

Office of Electricity Delivery, “Electric Emergency Incident and Disturbance Report.
” U.S. Department of Energy; Nov. 2014.

Aceto G, Botta A, Marchetta P, Persico V, Pescapé A. A comprehensive survey on
internet outages. J Netw Comput Appl 2018;113:36-63.

Meier A. An algorithm to identify power outages based on Internet disconnects,”
Lawrence Berkeley National Laboratory, Berkeley (California), GMLC; Mar. 2017.
Campbell RJ. The Smart Grid: Status and Outlook. Congressional Research Service,
Washington, D.C., R45156; Apr. 2018.

Energy Information Administration. Average frequency and duration of electric
distribution outages vary by states. Today in Energy; Apr. 5, 2018. [Online].
Available: < https://www.eia.gov/todayinenergy/detail.php?id = 35652# > .
[Accessed: Aug. 1, 2018].

Kafka P. Comcast, the largest broadband company in the U.S., is getting even
bigger. Recode; Apr. 27, 2017. [Online]. Available: < https://www.recode.net/
2017/4/27/15413870/comcast-broadband-internet-pay-tv-subscribers-q1-

2017 > [Accessed: Oct. 16, 2018].

Alpha Technologies. Alpha Micro 350 Datasheet; 2018.

National Academy of Sciences, National Academy of Engineering, and National
Research Council, America’s Energy Future: Technology and Transformation.
Washington, DC: The National Academies Press; 2009.

Walk Score, Find Apartments for Rent and Rentals - Get Your Walk Score. Walk
Score, 2018. [Online]. Available: < https://www.walkscore.com/ > [Accessed:
Oct 5, 2018].


http://refhub.elsevier.com/S0306-2619(19)31627-7/h0005
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0005
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0005
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0015
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0015
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0020
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0020
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0035
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0035
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0035
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0050
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0050
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0065
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0065
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0065
https://poweroutage.us/
https://poweroutage.us/
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0075
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0075
https://ngdc.noaa.gov/eog/data/web_data/japan/japan.html
https://ngdc.noaa.gov/eog/data/web_data/japan/japan.html
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0090
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0090
https://www.ecobee.com/donateyourdata/
https://www.ecobee.com/donateyourdata/
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0125
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0125
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0125
https://www.eia.gov/todayinenergy/detail.php%3fid%3d34232%23
https://www.clickondetroit.com/michigan-power-outage-2017
https://www.clickondetroit.com/michigan-power-outage-2017
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0150
http://refhub.elsevier.com/S0306-2619(19)31627-7/h0150
https://www.eia.gov/todayinenergy/detail.php%3fid%3d35652%23
https://www.recode.net/2017/4/27/15413870/comcast-broadband-internet-pay-tv-subscribers-q1-2017
https://www.recode.net/2017/4/27/15413870/comcast-broadband-internet-pay-tv-subscribers-q1-2017
https://www.recode.net/2017/4/27/15413870/comcast-broadband-internet-pay-tv-subscribers-q1-2017
https://www.walkscore.com/

	Using data from connected thermostats to track large power outages in the United States
	Introduction
	The connected thermostat dataset
	Tracking power outages caused by Hurricane Irma
	A power outage caused by a wind storm
	Power outage metrics from connected thermostat data
	Discussion
	Using Internet-connected devices as power outage sensors
	Uncertainty of a grid sensor network comprised of Internet-connected devices
	National grid reliability metrics using Internet-connected devices
	Future work

	Conclusions
	mk:H1_12
	Acknowledgements
	References




