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1. Introduction

1.1. Simulation of Building Energy Consumption

Building energy simulation is now an accepted practice to provide a quantitative assessment for
estimating energy consumption, compliance with building codes, and determining the size of
key equipment. Simulation is also used to explore the impacts of design changes and, more
recently, comfort and health implications. Researchers have steadily improved techniques to
model heat transfer, equipment, and controls operation (Lomas et al. 1997; Li and Wen 2014).
At the same time, measurements of actual weather conditions have been refined, both in
accuracy and frequency. The result has been increasing accuracy in the models’ estimates of
building’s energy consumption in actual conditions.

With the improving precision of modeling the performance of materials, equipment, and controls,
the greatest uncertainty in predictions of a building’s energy consumption is increasingly the
indoor temperatures (Booten et al. 2017). Building scientists often arbitrarily select temperature
schedules for case studies. Arbitrary temperatures make sense because the differences
between two simulations are more important than their absolute results. This is the case when
investigating the relative merits of different energy-saving technologies. However, simulations
undertaken to satisfy policy objectives require indoor temperatures that reflect actual practices
(Hendron and Engebrecht 2010) . These situations include building energy codes, health codes,
and resilience, where the analyst must compare the costs of improvements to the value of
energy savings or other benefits. A change of 0.5°C in the indoor temperature assumption can
raise or lower a home’s predicted heating or cooling use up to 10% (Booten et al. 2017). Using
realistic temperatures—temperatures found in actual buildings—is therefore an important input
to simulations (Seryak and Kissock 2003). A recent application is predicting the performance of
heat pump water heaters placed inside the conditioned space. The efficiencies of these devices
depend on the absolute ambient temperature (Amirirad, Kumar, and Fung 2018). The problem
of obtaining realistic indoor temperatures and schedules becomes even more difficult when
seeking to estimate regional or national benefits from improvements in building performance.

Actual temperature schedules inside buildings can be obtained either from direct measurements
or from surveys. Each approach has advantages and limitations; these are summarized below.

Researchers have measured temperatures in individual buildings or groups of buildings for
many decades. Notable studies have taken place in Japan (H. Yoshino et al. 2006) , China
(Hiroshi Yoshino et al. 2006), United States (Roberts and Lay 2013), Ireland (Healy and Clinch
2002), and Sweden (Johansson, Bagge, and Lindstrii 2013). These measurements are typically
collected in support of other goals, such as understanding thermal comfort, health effects, or
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performance of building components. Temperature measurements have grown more detailed
and extensive as the cost of sensors and data collection have declined. Temperature data
collected through measurements are ideal for simulations because the researcher can
understand the precise locations and frequency of measurements and then ensure that the
simulation is consistent. The limitation of this approach is that most measurements are
undertaken in small groups of buildings and for limited periods. Thus, measurements provide
highly accurate temperature schedules but they are difficult to extrapolate to larger populations
or even for the whole year.

Surveys are often used to collect temperature information for input to simulations. The surveys
typically ask occupants to provide temperature settings in their homes during principal activities
(sleeping, socializing, etc.). One of the most reputable and longest-running surveys in North
America, is the U.S. Residential Energy Consumption Survey, RECS (EIA 2015). The survey is
repeated every four years and, in 2015, about six thousand homes were surveyed. The sample
is carefully selected to represent the entire stock of U.S. homes. RECS asks survey
respondents to report just six indoor temperatures: when they are home, away, or sleeping for
both winter and summer. The survey provides an excellent window into national heating and
cooling habits, both lattitudenally and longitudinally. The survey results are far better than no
information but leave considerable uncertainty in actual temperature preferences. Like all
surveys, errors and inconsistencies can arise in self-reported temperatures and schedules. For
example, the survey respondent may not be the person responsible for controlling the home’s
temperature. Each type of thermostat used to control the temperature—manual, programmabile,
Internet-connected, or no thermostat at all—has a different relationship between settings and
actual temperatures. Changes in behavior during periods when the occupants are on
vacation—often ten percent of the time—are not captured, too. In general, the data on
temperatures and schedules derived from surveys are much less precise than the other inputs
used in a building simulation.

Survey results are especially problematic for simulations because these responses must be
translated into hourly, indoor temperatures. The researcher must further decide how to allocate
the responses across weekends, holidays, and other situations.

In summary, both approaches to collecting temperature data have limitations and both cannot
be used to accurately capture regionally representative temperature settings and schedules.

1.2. The Internet-Connected Thermostat

In about 2010 the first Internet-connected thermostats appeared were offered to consumers.
These thermostats used an Internet connection (typically through Wifi) to communicate
operating data to the thermostat vendor (in the “cloud”) and to receive operating instructions
from the vendor. The Internet connection enabled many new features to be offered to
customers, such as control via smartphones and optimized operation of the homes’ heating and
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cooling systems. Now, in 2020, we estimate that about twenty million Internet-connected (or
“‘communicating”) thermostats have been installed in North American homes. This corresponds
to roughly 15 percent of stock. About four million European homes have thermostats. The
market appears to be growing at about fifteen percent per year in response to the new features
the thermostats provide, incentives offered by utility companies, and the opportunity to more
conveniently save energy.

Connected thermostats continuously transmit data to their vendors. Every five minutes, typical
units transmit the following:

- Setpoint (or target) temperature

- Actual temperature in the home or zone

- Runtime of the heating or cooling system during the previous interval
Many models also detect motion, humidity, and detailed operating characteristics of the HVAC
system. Recently, vendors have begun offering additional temperature sensors that can be
placed in other zones to assist in more precise heating and cooling strategies.” The richness of
the DYD data is revealed in Figure tlkGrape, a heat map of temperatures for one year. The
vertical axis shows one week (5 minutes x 24 hours x 7 days), and the horizontal axis shows the
week of one year (52 weeks). The difference between the daytime and nighttime temperatures
appear as horizontal stripes (except on weekends). The seasonal transitions appear as one
moves from right to left. Data gaps appear as white spaces.

' Note that most connected thermostats cannot link to electrical “smart meters” and are not
capable of collecting concurrent energy consumption data.
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Figure tikGrape. Temperatures in a typical DYD home for one year.

Runtimes of the home’s heating and cooling system—more difficult to display—and other
sensor outputs complement this temperature data.

Data from connected thermostats would appear to be an excellent source of temperature
information. Unfortunately, most thermostat vendors have not shared this data in order to
protect customer privacy (and possibly valuable market information). European (and other
regions’) data privacy laws may also prevent releasing this information. In at least two cases,
vendors worked with researchers and provided them thermostat data. Booten et al. (2017)
analyzed thermostat data from about 12,000 homes distributed across the United States. With
it, they were able to estimate temperatures by climate region. Ge and Ho (2018) used
thermostat data from 27,000 American homes to study the persistence of habits in consumers’
temperature setting behavior. In both cases, however, the investigators had no additional
information about the homes beyond their locations, which limited the scopes of their analyses.

In 2015 one thermostat vendor, ecobee, established an experimental program called “Donate
Your Data (DYD)” where its customers could “donate” their data to researchers (Ecobee Inc.
2018). It further asked the “donors” to provide limited information about the household,
including the city, the home’s floor area, type of heating system, age of home, and the number
of occupants. The customer names and all personally identifiable information were removed.
Purchasers of new ecobee thermostats were offered the opportunity to “opt-in” at the time of
registration. The program has attracted a growing number of participants. As of August 2018,
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about 50,000 households have joined the DYD program by 2018. The trajectory of
registrations, and the major geographical locations of the DYD participants is shown in Figure
tikCherry. The overwhelming majority of the thermostats are located in the United States.
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Figure tikCherry. Growth of participants in the DYD program in the United States. The
2-letter codes refer to individual states and “Others” are the remaining states.)

Researchers have already begun to explore the DYD dataset and extract information about
occupant behavior and peak demand (Meier et al. 2019), occupant temperature preferences
(Huchuk, O’Brien, and Sanner 2018), estimating energy savings from thermostats (Daken,
Meier, and Frazee 2016), and using the network to track power outages (Meier, Ueno, and
Pritoni 2019). However, nobody has converted the DYD data into representative temperature
schedules. In this paper, we present a method to convert actual temperatures recorded in DYD
homes into data suitable for representative building simulations of American homes. We begin
by comparing evaluating the representativeness of DYD homes. Then we present a method to
convert DYD temperatures into a user-selected set of prototypes that capture the diversity in
operating behaviors. Finally, we illustrate the tool with some examples.

2. How Representative are the DYD Homes?

Before developing representative operating schedules for American homes from DYD data, it is
necessary to confirm that the participants in the DYD homes accurately reflect the diversity of
homes in the United States as a whole. Each participant filled out a questionnaire. So as to not
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discourage people from filling out questionnaires, ecobee avoided asking standard economic
and demographic questions that could be easily compared to the census. We therefore relied on
indirect methods of comparison described below.

Roughly 50,000 homes participated in the DYD program as of August 2018. While this is a
large number, the sample suffers from obvious biases. The DYD homes are a triply self-selected
sample. First, people buying ecobee thermostats require reliable broadband Internet
connections (greater than 1 Megabyte/sec) and wifi networks in their homes. About 6% of
American households lack broadband access. Most of those homes with inadequate
connections are located in rural areas. Second, connected thermostats are still a new
technology, so people who buy ecobee thermostats are probably early adopters and more
technically proficient than the average. (This bias may be diluted somewhat by numerous utility
programs subsidizing purchases.)? Finally, only a unique group of ecobee customers will
choose to opt in to the DYD program and fill out the questionnaire. For all of the above
reasons, the DYD sample is likely to not reflect the actual population and housing stock in the
United States.

To understand the extent of this bias, we compared the DYD homes to the U.S. Department of
Energy’s Residential Energy Consumption Survey, RECS (see above). The RECS surveys only
about 6000 homes, but the Department of Energy rigorously ensures that the homes accurately
reflect the whole population. Our approach to exploring sample bias was to compare findings
from similar questions in the DYD questionnaire and RECS.

According to RECS, about 63% of American households are detached single-family homes. In
the DYD sample, roughly 63% are also single-family detached homes. However, the
categories in the DYD questionnaire do not map directly into the RECS categories. About 18%
of the DYD homes are in the self-described categories of “townhouse”, “condominium”,
‘rowhouse”, and “semi-detached,” compared to 6% in the single RECS category of
“single-family attached”. RECS estimates that about 26% of American households are
apartments but only 5% of the DYD participants reported living in apartments. This bias towards
single-family homes (detached and attached) is to be expected because ecobee thermostats
are not compatible with most apartment heating and cooling systems. For that reason, we

compared the DYD homes to RECS single-family homes (detached and attached).

We performed additional comparisons between DYD and RECS data, including: geographic
distribution, floor area, number of occupants, type of heating system, and age of home. Three
comparisons are presented graphically in Figure tikApple, Figure tlkkBanana, and Figure

tikOrange

2 For competitive reasons, ecobee was not able to share with us the demographics of its customers.
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Figure tlkApple. Geographical distribution of DYD participants compared to RECS
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Figure tlkOrange. Distribution of number of occupants in homes for DYD participants and
single-family detached homes in the RECS sample

There are some differences between the groups but fewer than one might expect. The DYD
homes are geographically distributed roughly the same as RECS (Figure tlkApple) There are
relatively fewer DYD homes than RECS homes in the Mountain region and more in the
mid-Atlantic region, but the overall differences are small. Figure tlkkBanana shows the floor
areas in the different regions. The DYD and RECS homes are nearly the same size—DYD
average floor area is only 4% larger. The relationships between the number of occupants and
floor area are also similar. Figure tlkOrange shows the distribution of occupants in DYD and
RECS homes. With the exception single-occupant homes, the number of occupants in the two
groups are similar. For example, 35%—40% of the homes in both groups have two occupants.

The age distribution of homes in the two groups is also similar (data not shown). The heating
systems differ because the ecobee thermostat is not fully compatible with electric resistance
heating systems and heat pumps (data not shown).

It is also possible to compare measured temperatures in the DYD homes to temperatures
reported by the occupants in RECS homes. The RECS survey asks occupants to report
temperature settings while at home, sleeping, and away for both winter and summer. In this
comparison, the median value of the responses was used. Ecobee adopted the same terms for
its primary settings (or modes): Home, Sleep, and Away. Unlike RECS, ecobee collects both
the setpoint (that is, the desired temperature) and the actual temperature. These may differ
because of periods when the actual temperature floats above the setpoint or “smart recovery” is



enabled. The results of the comparison are shown in Figure tlkkLemon. The Figure also displays
the average temperatures for the whole heating and cooling seasons.
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2.0.1. Figure tlkkLemon. Comparisons of temperatures in DYD and RECS
households

The temperatures follow expected behaviors, that is, in the winter temperatures are highest
(warmest) when occupants are at home and lowest (coolest) when they are away and reversed
in the summer. The impacts of floating temperatures can be observed by comparing the actual
and setpoint DYD temperatures. In the winter the actual temperatures are slightly higher than
the setpoints during Away and Sleep periods. In the summer, the DYD Away setpoint is
significantly higher than the actual temperature, possibly because it captures cooler periods
when no air conditioning was needed.

The RECS respondents report significantly higher (warmer) setpoints during the winter than
measured setpoints in the DYD homes. This trend applies for Home, Away, and Sleep periods.
The relationship continues during summer, that is, RECS setpoints are higher (warmer) than
those measured in DYD homes. In general the RECS occupants appear to set their
thermostats so that they are less comfortable—colder in the winter and warmer in the
summer—than occupants of the DYD homes. It is not clear if this is a difference in behaviors or
an artifact of the data collection techniques. The two groups have more similar temperatures
when the DYD temperature (rather than the setpoint) is compared to the RECS values.

In summary, the DYD homes are not perfectly representative of the stock of single-family homes
but they are reasonably similar with respect to location, floor area, number of occupants, and
age of the homes. It is still possible that the occupants of the DYD homes differ greatly with
respect to income or education, but there is no evidence suggesting this.
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3. A Method for Creating Representative
Temperature Schedules

3.1. Technical Approach

No single temperature schedule can represent the wide range of temperatures and schedules.
Simulations of a home’s energy use based on average conditions are likely to be highly
misleading. They would, for example, not capture homes operated under extreme conditions,
where energy consumption might be especially high. One solution is to construct a set of
schedules that capture this diversity. Ten temperature schedules would more effectively capture
this diversity (and a million would be even better). The technical challenge, however, is
determining the correct weighting for the different temperature schedules so that the
combinations of the simulated homes reflect the national situation. The DYD data provides the
necessary information to create sets of representative temperature schedules. The method of
generating representative prototype temperature schedules is described below.

Our approach to generating representative temperature schedules builds upon patterns
observed in the DYD data. These data enable us to identify the variables that strongly affect
temperatures and schedules. As described earlier, ecobee thermostats divide the day into three
technical modes: Home, Away, and Sleep. The frequencies of these modes at each hour were
calculated for every hour. These frequencies were calculated separately for weekdays and
weekends because the distributions are so different (see Figure tlkLime). Annual data were
used to calculate the frequencies.’

3 Frequencies based on monthly (rather than annual) temperatures could be calculated, but this would
require much more computation.
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Figure tlkLime. Frequencies of occurrence of Home, Away, and Sleep for weekdays and
weekends.

The figures show that on weekdays, about 95% of the homes are in Sleep mode until about 5
AM and then drops rapidly to a minimum near noon. Meanwhile, the fraction of homes in Away
mode climbs sharply after 6 AM to almost 40% at noon. The maximum fraction of homes in
Home mode occurs about 18:00. On weekends, the Sleep mode extends about one hour later
and the fraction of homes in Away mode is much less than half that of weekdays.

The number of occupants also affects the time the house resides in each mode. Figure
tikPersimmon show the impact of the number of occupants on the occurrence of Home mode.
Not surprisingly, the fraction of homes in Home mode increases with the number of occupants.
This phenomenon is especially strong near 14:00 on weekdays, where single-occupancy
homes are 0.5 while 6-person homes are 0.75. These differences almost vanish on weekends.
The DYD data set was large enough to examine regional variations in occupancy; however, no
significant differences were found.
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Figure tikPersimmon. Influence on number of occupants on fraction of time in Home mode.

Figure tikLemon summarizes the hourly setpoints and temperatures for the entire country.
However, the richness of the DYD dataset allows further disaggregation of temperatures into
five separate climate zones defined by Building America for its prototypes (see Figure
tikMelon). Variations between the climate zones are easily observed. For example, during the
summer the setpoints in the Mixed-Dry/Hot-Dry regions are significantly higher (warmer) than in
the Hot-Humid regions. During the winter, the setpoints show less variation; however, the
homes in the Marine region have lower nighttime setpoints.
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3.1.3. Figure tlkMelon. Room temperatures for each climate zone

The above analyses identified several variables that affect a home’s heating and cooling energy
consumption—temperatures, schedules, number of occupants, and climate zone—and should
be taken into account when simulating a home’s HVAC use. The DYD dataset makes it possible
to quantify the frequency of occurrence of these factors. In the following sections, a method is
described to generate an arbitrary number of typical schedules and temperatures for inputs to
simulation models.
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3.2. Generating Typical Temperatures and Schedules for
Simulation Model Inputs

A program was written to generate typical temperature setpoints and schedules for use in
simulation models based on the DYD data. For example, if a user wishes to represent the
entire range of residential temperatures and schedules in the United States with six input files
for their simulations, what should they be? This method can provide 1 - 40 input files. The
logic behind the procedure is described below.

The program consists of two major procedures: a method for generating temperature setpoints
and a method for generating the typical schedules. The procedure to generate setpoint
temperatures is shown as a flow chart in Figure tkINashi. First, the DYD data must be
organized for simple computation. For each home, the distribution of the setpoint temperatures
is acquired for each season (Summer/Winter), mode (Home/Sleep/Away), and climate zone
(five separate zones + all zones), and loaded into a database. These data are similar to the
“setpoint” temperatures shown in Figure tlkkLemon, but now assembled for each home.

Before generating setpoint temperatures, the user must specify the "number of desired samples
(N)", that is, the number of input files to be generated. The generator then outputs a setpoint
temperature schedule that can be used as an input for simulation of any climate zone, season,
or schedule. The empty box in the flow chart represents the end of the loop for XXX.

14
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Figure tkINashi. Flow chart showing procedure to generate setpoints

The calculation method is straightforward. For each parameter, the setpoint temperature in the
database is sorted in ascending order to create a distribution function T(p). The set of setpoint
temperatures represented as follows is output,

T(k/(N+1)forkin1,2,...,N <equation 1>

That is, the entire distribution is divided into (N + 1) digits, and the value of the delimiter is
output. When N =1, T (0.5): the median of all distributions is output, and when N = 4, four
values of T(0.2), T(0.4), T(0.6), and T(0.8) are output. Figure tlkkMango illustrates the setpoints
calculated from this procedure for N=4 and Figure tlkPlum illustrates the setpoints calculated for
N=20.
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Figure tlkPlum. Distribution of setpoints in Home mode for all climate zones in summer
with N = 20.

Figure tlkPlum shows the recommended setpoints for use in simulations during the summer
while the thermostats are in Home mode when 20 files have been selected. The distribution is
interpreted as follows: roughly 10% of the homes have setpoints below 72°F, 50% of the homes
have setpoints below 75°—the median setpoint—and 10% of the homes have setpoints above
79°. Similar distributions can be generated for other modes and, if desired, specific climate
zones. It is interesting to observe that about 80% of setpoints lie between 72° and 79°.

The advantage of increasing N appears in the extremes; the fraction of homes with either very
low or high setpoints are explicitly captured. These homes, for example, might be vulnerable to
moisture problems.

The second component of the tool generates schedules. The methodology is summarized in
Figure tkllchigo. First, the DYD schedule data must be organized for simple computation. This
organization is identical to the setpoint temperatures, that is, for each home, the distribution of
the setpoint temperatures is acquired for each season (Summer/Winter), mode
(Home/Sleep/Away), and climate zone (five separate zones + all zones), and loaded into a
database. Next, the average number of hours [h/h] of each schedule of the day of week
(Weekday/Holiday) and every hour (0 - 23 o'clock) for all target households is acquired, and a
database is created for each number of occupants(1 - 6 persons + whole). In addition to the
above parameters, the generator also has a "number of desired sample(N)" of schedules to be
acquired as an input, and outputs a schedule that can be used as an input of simulation for any
day of the week or number of occupants. The empty boxes represent the end of the loop for
each "hour", "day of week", "user", etc.

Clustering techniques are applied to identify the representative schedules. The K-Means
method was used to generate the groups based on the value. Then the schedules are
generated by calculating averaged probability for each group and each hour, as described in the
flowchart. The number of schedules to be acquired (N) is calculated as the number of clusters,
and a schedule with the maximum number of hours of schedule for each group/time is taken as
the output at that group / time. K-Means is implemented using KMeans of the scikit-learn/cluster
module of Python 2.7, and the initial value of the module are used for parameters other than the
number of clusters.
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Flowchart of the Schedule Generator (Tool)

Calculation flow of Schedule Pattern

Flow of making the
database

|

Flow of using the tool

/ Calculate for each user

Get information about number of
occupants from the meta-data

|

Calculate for each day of week \

(Weekday/Weekend)

|
/ Calculate for each hour \
[

Calculate the probability
of each schedule
(Home/Away/Sleep).

!

Create a database for each
combination of day of week and
number of occupants schedule
about the probability of each
schedule

Input

- Day of week (Weekday/Weekend)
- Number of occupants{All, 1-8)
- Number of desired sample (1-40)

Extract data that meets the

conditions from the database

Divide the data into N groups by
using clustering analysis (K-means

method)
T

/ Calculate for each group, hour \

Calculate averaged probability of
all users for each schedule

Determine the schedule with the
most highest probability as the
schedule for that hour
|

!
Output

[Text] Recommended schedule for
each hour and percentage of
users included in the group

[Graph] Same as above

[Graph] Original probability of the
schedule for each hour

Figure tklichigo. Flowchart of the logic used to generate schedules

Figure tikBlueberry illustrates the output for N=4. Table tlkWalnut displays the results in tabular
form when four schedules are selected to represent the national housing stock. In two of the
schedules for N=4, there are no Away periods. These schedules with no Away time (that is,
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somebody is always at home) represent about 57% of the homes.
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Figure tlkBlueberry. Schedules for weekdays, all occupants, and all regions for N = 4.
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Table TIkWalnut. Recommended modes when four schedules are selected (N=4).




For N=10, even more diverse schedules appear. Figure tlkkMango illustrates the output for N=10
and Table tlkPecan displays the results in tabular form. For example, 3.5% of the homes have
essentially all of the non-sleeping hours in Away mode during weekdays.
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Figure ttkkMango. Schedules for weekdays, all occupants, and all regions for N = 10.
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| Schedule for Weekday, Number of Occupants: All are

Table tlIkPecan displays the results in tabular form when ten schedules are selected to represent
the national housing stock.

The power of this method and the underlying data is illustrated in the example below. In this
case, six schedules were generated for each climate zone. Separate schedules were generated
for weekdays and weekends (and holidays). A further distinction was made between homes
with a single occupant and those with four occupants. Tables tlkCashew and tlkPeanut show
the temperatures, the schedules, and the fraction of housing stock represented by each
schedule. In this case, six prototypes (N=6) were generated for each climate zone. Table
tikCashew shows the temperatures for the prototypes in each climate zone, mode, and season.
Note that the temperatures of prototypes in the same climate zone differ by as much as 3°C for
the same mode.

Season: Summer Winter
Schedule: Sleep Away Home Sleep Away Home
Climate zone Sample number

Hot-Humid 1 227 24.4 235 18.5 17.9 19.5

2 237 25.4 24.4 19.7 18.9 20.3

3 25.0 26.5 253 20.7 19.8 212

Mixed-Humid 1 223 23.8 22.9 17.9 175 193
2 234 25.0 237 19.1 18.5 20.0

3 24.7 26.5 24.7 20.1 19.4 20.9

Mixed-Dry/Hot-Dry 1 23.9 253 243 17.9 172 19:3
2 257 26.5 253 19.4 18.5 20.3

3 264 279 26.1 20.6 19.9 21:3

Marine 1 233 24.8 235 16.8 17.0 19.1

2 25.0 26.5 24.8 18.5 18.2 19.9

3 26.6 27.7 25.6 1957 19.4 20.6

Very-Cold/Cold 1 22:5 24.1 22.9 17.3 17.2 19.1
2 237 25.4 239 18.8 18.4 20.0

3 25.1 26.9 25.0 19.9 19.4 20.8
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Table tlkCashew. Temperature settings for the prototypes in each climate zone, mode, and
season.

Table tlIkPeanut shows the hour-by-hour schedules for the modes and the percentage of DYD
homes represented by the prototype. Separate timings are also generated for
weekdays/holidays and for the number of occupants (one or four). The percentages attributed
to each prototype vary widely. For example in Weekday (1 occupant), most of the homes are
represented by two prototypes about 5.5% of homes are represented by sample number 3.
Sample 3 also has a complex schedule because it has two periods while in Away mode.

Day of week Number of occupants Sample number Percentage Sleep Away Home
Weekday 1 1 50.7 0-6, 22-23 8-16 7,17-21
2 43.8 0-6, 23 - 7-22
3 55 0-12 13-15,19-23  16-18
4 1 43.4 0-5,22-23 8-15 6-7, 16-21
2 29 0-5,23 - 6-22
3 27.6 0-5,21-23 - 6-20
Holiday 1 1 50.1 0-5, 23 - 6-22
2 343 0-7,23 - 6-22
3 15.6 0-7,22-23 8-17 18-21
4 | 47.1 0-6, 23 - 7-22
2 42.8 0-6,21-23 - 7-20
3 10.1 0-6, 22-23 9-16 7-8, 17-21

Table tlIkPeanut. Hour-by-hour schedules for the modes and the percentage of DYD homes
represented by the prototype. Separate schedules and percentages are also generated for
weekdays/holidays and for the number of occupants.

This information is sufficient to create temperature schedules for each prototype and to weight
the resulting simulations so as to create a national average heating and cooling energy
consumption.

4. A Web-Based Schedule Generator

The above examples were generated for homes located in all climate regions, with all numbers
of occupants, during weekdays. Other schedules can be generated for specific climate zones,
days of the week, number of occupants, and floor area. However, each schedule requires
access to the sorted data as described in Figures tkiINashi and tkllchigo. To enable wider
access to the results, we developed a web-based tool to generate temperature schedules.
Figure TIkPapaya is a screenshot of the user interface.
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>>> we need a pretty picture of the user interface
Figure TIkPapaya. A screenshot of the user interface for the web-based schedule generator

The user can specify the number of schedules (up to N = 40), xxxx, and xxxxx. The tool returns
graphical displays of the results and tables similar to those presented earlier. These results are
suitable for input into schedules for building energy simulation models. The tool makes it
possible to quickly identify temperature schedules that may cause unusual energy consumption
or performance issues and estimate the fractions of homes falling into those categories.

The tool is available to researchers upon request to the authors. A future version will be made
public after the next installment of DYD data has been incorporated. (The next installment will
result in a roughly 10-fold increase in the number of homes.)

5. Discussion

The DYD database gives insights into the temperature preferences and schedules in homes
that were never before available. Before this, national estimates could only be formed from
surveys based on guesses by occupants, with a few temperatures representing behavior
through a season and in different types of occupancy. In contrast, the DYD data is based on
actual measurements in thousands of homes taken every five minutes. It therefore represents a
transformation of our knowledge of heating and cooling preferences from point values to
patterns and cycles. This information enables more realistic simulations of American heating
and cooling behavior, leading to more accurate estimates of energy consumption and savings.
The information can also improve government and utility recommendations for energy-saving
thermostat settings. The DYD database has applications not directly related to temperatures,
too, such as HVAC sizing or improving estimates of energy consumption of heat pump water
heaters.

It is essential to understand the DYD’s limitations before generalizing the findings to the entire
U.S. housing stock. First, the overwhelming majority of participants are single-family homes.
Second, the database contains relatively few homes equipped with heat pumps. Several
sources of bias in the participants were also identified, such as self-selection and
early-adoption. The participants provided some socio-demographic information but not income,
precise location, and other key indicators. Nevertheless, the DYD homes were surprisingly
similar to the single-family homes in the Residential Energy Consumption Survey with respect to
location, floor area, and number of occupants.

A final limitation is the absence of homes where both temperature and energy data are
available. This is mostly an institutional problem—thermostat vendors and utility companies
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refuse to share their data—but is also understandable to protect privacy and security. The
failure to share energy and temperature data makes it impossible to perform some of the most
fundamental explorations, such as the relationship between indoor temperatures and energy
use.

Another unknown factor is the manner in which people use their thermostats. We cannot
exclude the possibility that DYD participants heat and cool their homes differently than other
homes because their thermostats have additional features. One unique feature is remote
control (via smartphone or the web), which gives DYD participants the ability to pre-heat or
pre-cool their homes. Another feature is that ecobee can adjust temperatures and schedules to
reduce HVAC energy consumption (if allowed by the participant). Finally, we have no direct
information that the participants are correctly operating their thermostats and are satisfied with
the thermostat’s performance. Errors in programming thermostat operation have been
documented in a large fraction of homes (Meier et al. 2011). However, we have indirect
evidence of satisfaction: the participants maintained settings for long periods and kept their
thermostats for several years.

The DYD data gives insights into conditions that depart from the average. For example, it is
possible to estimate the fraction of homes maintained below 16°C in the winter or cooled to
above 28°C in the summer. About XXX% of the homes are continuously occupied (in Home or
Sleep modes). The DYD data also reveal that homes are vacant (in Away mode) roughly XX%
of the time, which is a feature not always included in simulations.

The DYD database is expected to keep growing and exceed 100,000 participants in 2021. This
will provide much more detailed insights into temperature behaviors. Newer thermostats are
often equipped with multiple temperature sensors, so researchers can explore the intra-home
temperature variations. Unfortunately, the value of a larger sample will be constrained by the
poor meta-data about the participants. So an important goal will be to improve the quality of
information about the occupants—floor area, demographics, etc.—to complement the rich
temperature and HVAC operation data.

This paper explored only the temperature aspects of the DYD data. The Connected
Thermostats also collect runtimes of the HVAC equipment. Here, too, completely new insights
into residential heating and cooling operation can be obtained. Operational data will help verify
the performance of HVAC systems in simulation models in ways that were never before
possible. These results will be reported in other communications.

6. Conclusions

A new type of thermostat, which is connected to the Internet, collects temperature and operating
data every five minutes from millions of homes in North America and in a growing number in
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other countries. This paper explores the application of this data to simulations of energy
residential building energy use. The goal is to create more realistic temperatures and schedules
in the simulation models than those used today. The approach assumes that a portfolio of
simulations, each capturing one set of temperatures and schedules, will provide more insights
than a single simulation with average temperatures and schedules. The analysis relies on a
unique dataset: the owners of ecobee thermostats who opted to share their thermostat’s
performance information with researchers through the Donate Your Data Program. At the time
of this study, over XXX thousand homes were in the dataset. The DYD data is based on actual
measurements in thousands of homes taken every five minutes and represents a transformation
of our knowledge of heating and cooling preferences from a few point values to detailed
patterns and cycles.

The first step was to determine if the homes in the program were representative of the stock of
homes in the United States. A series of comparisons were made between the limited meta-data
available from the participants and a national survey of representative homes. The DYD
dataset generally matched the survey results for single-family homes with respect to location,
floor area, and other characteristics. Thus, we concluded the DYD homes were reasonably
representative of the U.S. single-family homes.

A method was developed to generate temperature schedules based on the DYD data. The goal
was to create a flexible program that could generate 1 - 40 different temperature schedules for
simulations. The program generates distributions of indoor temperatures in each of the three
operating modes (Home, Sleep, and Away) and under different conditions, such as season, day
of week, and number of occupants. The user must select the number of simulations desired.
The program then searches for the temperatures that best reflect the shape of the distribution
for the desired number of simulations. Next, the program generates distributions of time that the
homes spend in each operating mode, both with respect to actual time of day and the durations.
The program then searches for the schedules that best reflect the shape of the distribution for
the number of simulations selected. The program outputs hourly temperature profiles, suitable
for inputs to building energy simulation programs. The program also calculates the fraction of
housing stock for which each profile applies. Thus, the user can weight the results of each
simulation to estimate average heating or cooling energy consumption for the entire stock of
homes.

The program can also identify the fraction of homes operated with less-common temperatures
or schedules. These situations are difficult to capture when simulations only use average
conditions yet may be important because they may be associated with unique technical or
health problems.

The Donate Your Data database has important limitations—notably the absence of linked
energy consumption data—but this study shows the unexpected sources and applications of big
data and the insights that these analyses can give into technical, health, and behavioral issues.
Further insights are likely as the dataset grows and other characteristics are investigated.
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