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H I G H L I G H T S

• Deep learning techniques are utilized to facilitate building energy predictions.

• Unsupervised autoencoders are developed for feature engineering.

• Generative adversarial networks are utilized for feature engineering.

• Generative modeling proves to be useful for enhancing prediction performance.

• This study enables an automated approach for building energy modeling.
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A B S T R A C T

The enrichment in building operation data has enabled the development of advanced data-driven methods for
building energy predictions. Existing studies mainly focused on the utilization of supervised learning techniques
for model development, while overlooking the significance of feature engineering. Feature engineering are
helpful for reducing data dimensionality, decreasing prediction model complexity, and tackling the problem of
corrupted and noisy information. Considering that each building has unique operating characteristics, it is
neither practical nor efficient to manually identify features for model developments. Data-driven feature en-
gineering methods are thus needed to ensure the flexibility and generalization of building energy prediction
models. Using operation data of real buildings, this paper investigates the performance of different deep learning
techniques in automatically deriving high-quality features for building energy predictions. Three types of deep
learning-based features are developed using fully-connected autoencoders, convolutional autoencoders and
generative adversarial networks respectively. Their potentials in building energy predictions have been exploited
and compared with conventional feature engineering methods. The study validates the usefulness of deep
learning in enhancing building energy prediction performance. The research results help to automate and im-
prove the predictive modeling process while bridging the knowledge gaps between deep learning and building
professionals.

1. Introduction

Building operations are energy intensive, accounting for approxi-
mately 80–90% of the total energy consumption throughout the whole
building life-cycle [1]. The enhancement in building operational per-
formance can provide key solutions to building energy savings due to
the wide existence of manual faults, operating deficiencies, improper
control strategies and etc. [2,3]. Meanwhile, building operations are
information intensive thanks to the adoption of intelligent building

management systems. Massive amounts of building operation data are
being recorded and available for data analysis. It is very promising to
develop big data-driven approaches to smart building energy manage-
ment.

Among many data analytics, predictive modeling has drawn great
attentions from both academic researchers and building professionals.
The common prediction targets in the building field include building
energy consumptions [3,4], indoor environment [5] and system per-
formance indices [6]. Predictive modeling is closely related to two main
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tasks in building energy management, i.e., optimal controls and
anomaly detections. As examples, the accurate and reliable predictions
of building cooling load can be used for optimizing the operation
strategy of building thermal energy storage systems [7], finding the
most energy-efficient setpoints of chilled water systems [8,9], and de-
riving the optimal on–off schedules for chiller plants [10]. Anomalies or
faults can also be detected through data-driven approaches. In such a
case, a prediction model is developed to represent the normal operation
patterns in historical data, and anomalies or faulty conditions can be
detected by comparing with the predicted or actual values. Such ap-
proaches have been used to detect anomalies at multiple levels, such as
abnormal energy profiles at the building-level [11] and faulty opera-
tions at HVAC system-level [12].

In general, existing methods on building energy predictions can be
divided into two general groups, i.e., physical and data-driven methods
[13]. Physical methods mainly rely on physical principles and domain
expertise to specify the relationships between model inputs and out-
puts. These models are typically referred as “white-box” models. The
main limitation is that the “white-box“ modeling process can be time-
consuming as excessive details are needed, such as the properties of
building envelopes and theoretical operating characteristics of service
systems. By contrast, data-driven models aim to discover the underlying
relationships between input and output variables based on actual op-
eration data. The modeling process is typically more efficient and
flexible for practical applications [13]. Considering the nonlinear
nature between building energy consumptions and its affecting vari-
ables, advanced supervised learning techniques have been used for
model developments. The most widely used supervised learning tech-
niques in the building field include artificial neural networks, support
vector regression and ensemble methods [14,15]. Compared with sta-
tistical methods (e.g., multiple linear regression), these techniques can
describe more complicated and nonlinear relationships and thus, the
predictions obtained are typically more accurate.

Despite encouraging results obtained, most studies in this area fo-
cused on the utilization of supervised learning techniques in model
developments, while overlooking the other key factor in predictive
modeling, i.e., feature engineering. Feature engineering refers to the
process of constructing valuable features as model inputs. Existing
studies mainly used engineering expertise to select inputs for developed
models. For instance, building cooling loads are closely related to in-
door occupancy [16]. Considering that the building occupancy is cor-
related with time, time variables (e.g., Hour and Day type) are usually
selected as model inputs [17,18]. The outdoor environment can dra-
matically affect the building cooling load. Therefore, variables which
can describe outdoor conditions, such as outdoor dry-bulb temperature
and relative humidity, are also used as model inputs [19–21]. Similarly,
variables which are closely related to chiller operating performance
(e.g., the chilled water supply and return temperature) were used as
inputs for estimating chiller power consumption [22,23]. Considering
that building operations are dynamic and autocorrelated, more reliable
and accurate predictions can be achieved by introducing variables de-
scribing operating conditions at previous time steps, e.g., using the
building energy consumptions in previous hours as inputs [24,25]. It
should be noted that introducing extra variables on previous timesteps
may negatively affect the prediction performance. The main reasons are
as below. Firstly, these variables are highly correlated and therefore,
the supervised algorithm may not be able to identify the true re-
lationships across different time steps. Secondly, introducing too many
input variables will dramatically increase the model complexity. It will
typically increase the risk of over-fitting while enlarging the compu-
tational burdens.

To tackle this problem, previous studies mainly adopted two
methods to construct features from historical building operation data.
The first relies on domain expertise to manually select certain historical
values as model inputs [26]. Such methods cannot serve as generic
solutions and the generalization performance is typically poor. The

other adopts statistical methods to extract data-driven features. One
popular method is to calculate the summarizing statistics (e.g., the
mean and standard deviation) of measurements over a time period
[27]. It can effectively reduce the number of input variables. However,
the information loss may be significant when the window size is large
and time series data are highly fluctuating. The other popular statistical
feature engineering method is principal component analysis. The
principal components obtained can be used as model inputs [28,29].
The information loss can be controlled based on the total variance ex-
plained by principal components. It is a more advanced statistical ap-
proach to feature engineering and can be used to tackle the problem of
multicollinearity among input variables. Nevertheless, the features
developed are in essence linear transformations of the original data.
Consequently, their value is limited in representing high-level interac-
tions in the original data. To ensure the reliability and flexibility in
building energy predictions, it is desired to develop advanced data-
driven feature engineering methods to construct nonlinear, high-level
and useful features for modeling. Such methods can help to fully au-
tomate the predictive modeling process while ensuring better general-
ization performance.

Deep learning is a powerful technology which has been used in a
wide variety of analytical tasks, such as image classification and speech
recognition [30,31]. Compared with conventional data analytics, deep
learning models have deeper architectures, i.e., the input data are
transformed multiple times before deriving the output. It can therefore
describe complicated data relationships. Deep learning can be used
either in a supervised or unsupervised manner. Unsupervised deep
learning has been proved to be useful in constructing high-level features
from image and audio data. However, few studies have been performed
to investigate the potentials of unsupervised deep learning in the
building field. The basic versions of unsupervised deep learning models
were used to construct features for building energy modeling [3,11,32].
The results showed that the features derived were capable of preserving
useful information in the original data, based on which accurate pre-
dictions could be achieved. It is noted that powerful deep learning
techniques are constantly emerging, providing promising techniques for
analyzing complicated time series data in the building field. To fill the
knowledge gap between deep learning and building professionals, this
study examines the potential of various state-of-the-art deep learning
techniques for feature engineering, i.e., fully-connected autoencoders
(AEs), convolutional autoencoders (CAEs) and generative adversarial
networks (GANs). Using field data, the usefulness of deep learning-
based feature engineering methods is assessed and compared with
conventional feature engineering methods. It aims to provide useful
references for the automatic developments of accurate and reliable
building energy prediction models.

2. Research methodology

2.1. Outline

As shown in Fig. 1, the research methodology consists of two main
parts, i.e., feature engineering and predictive modeling. The first step
performs data-driven feature extraction based on different feature en-
gineering methods. In total, five feature engineering methods are
adopted, including two conventional data-driven feature engineering
methods and three deep-learning based methods. Secondly, four su-
pervised learning techniques, including multiple linear regression,
support vector regression, artificial neural networks and extreme gra-
dient boosting trees, are used to develop one-step ahead building en-
ergy prediction models based on different feature sets. The resulting
prediction accuracies are used to evaluate the usefulness of different
feature engineering performance.
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2.2. Data-driven feature engineering methods

In this study, the performance of five data-driven feature en-
gineering methods is assessed and compared. The first two are con-
ventional data-driven feature engineering methods, which rely on
principal component analysis and simple summarizing statistics. Three
deep learning-based methods are proposed for feature engineering
based on the use of fully-connected autoencoders (AE), one-dimen-
sional convolutional autoencoders (CAE) and generative adversarial
networks (GAN) respectively. To fairly evaluate the performance of
different feature engineering methods, the number of features extracted
is fixed as k and determined as the number of principal components
selected for predictive modeling. It should be noted that determining
the number of principal components to retain is one of the most critical
challenges in principal component analysis. One of the most widely
used approach is to select principal components based on the propor-
tion of total variance explained [33]. In practice, the proportions used
typically range between 70% and 95% [34]. In this study, a rather
conservative value, i.e., 95%, is adopted to minimize the information
loss. As a result, the first feature set for model development consists of k
principal components. The second feature set contains k summarizing
statistics, i.e., the building cooling load measurements in previous
hours are equally divided into k segments and their mean values are
calculated as features. The third to fifth feature sets are constructed by
deep learning-based feature engineering methods. The architectures of
deep learning models are carefully designed to ensure that the number
of features is k. The details of these three methods are shown as follows.

2.2.1. The autoencoder-based feature engineering method
An autoencoder (AE) can be regarded as an artificial neural network

trying to reconstruct the input data. It has two parts, i.e., the encoder
and the decoder. Assuming the input data is X with p variables, the
encoder tries to learn a function f which encodes the input data X into a
hidden space h, i.e., h= f(X). Meanwhile, the decoder learns a function
g to reconstruct X as close as possible based on h, i.e., =X g h( )' so that

≈X X '. The development of AEs belongs to the category of un-
supervised learning, as the model outputs are simply set as the model
inputs. In general, there are two basic feed-forward AE architectures,
i.e., undercomplete and overcomplete feed-forward AEs. As shown in
Fig. 2(a), an undercomplete feed-forward AE adopts a bottle-neck ar-
chitecture for input reconstruction, i.e., the dimension of h is smaller
than p. By contrast, as shown in Fig. 2(b), the dimension of h in an

overcomplete feed-forward AE is larger than p. Given too much capa-
city, an AE may fail to learn any meaningful functions for encoding and
decoding, as a trivial identity function may be learnt for input re-
construction when h is equal or larger than p. Therefore, regularization
techniques, such as representation sparsity and robustness to noises, are
usually used during the training process. AEs have gained great popu-
larity for dimensionality reduction and information retrieval tasks
[35,36]. Given that an autoencoder has learnt meaningful functions for
input reconstruction, the output of the encoder, i.e., h, can be utilized
for input representation, based on which better supervised learning
performance can be achieved. As indicated by Goodfellow et al., lower-
dimensional representations can enhance the performance of regression
and classification tasks [37]. Therefore, in this study, a bottle-neck
architecture is adopted for developing basic AEs. The outputs of the
encoder are utilized as features for building energy prediction models.

2.2.2. The convolutional autoencoder-based feature engineering method
Traditional AEs adopt a feed-forward architecture for input re-

construction, i.e., each output unit is linked with each input unit. As a
result, the model complexity can be very high due to the large number
of model parameters. More importantly, the feed-forward architecture
cannot accurately capture the dependency in data with a grid-like to-
pology, e.g., one-dimensional time series data and two-dimensional
image data [38]. A more efficient model architecture, i.e., the con-
volutional neural network, can be used to tackle this challenge. Con-
volutional neural networks adopt convolutions as the basic operation
unit, which results in two intrinsic model characteristics, i.e., sparse
interactions and parameter sharing [37]. Sparse interactions refer to the
way of kernel computations. Traditional AEs utilizes a matrix of para-
meters to describe the interaction between each input and output units.
Assuming the input and output data have p and q variables respectively,
the resulting parameter matrix has a size of ×p q. By contrast, con-
volutional neural networks adopt a set of kernels with a small size of c
to describe the interactions with each output unit. Consequently, the
parameter size becomes much smaller, i.e., ×c q while ≪c p. In ad-
dition, in the traditional feed-forward architecture, each model para-
meter is used once when calculating the output. For convolutional
neural networks, the model parameters are shared across different op-
erations, which can further reduce the computational burdens.

Convolutional neural networks have been widely used in analyzing
time series data and image data. It has presented great capability in
extracting temporal or spatial features, such as recognizing shapes and

Fig. 1. Research outline.
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edges in image data [39]. Considering that building energy data are
essentially time series data, the adoption of one-dimensional convolu-
tional autoencoders (CAEs) may capture more useful features to de-
scribe the underlying temporal relationships for predictive modeling
than the fully-connected AEs. Fig. 3 presents an example of one-di-
mensional CAE, where convolution units are used for information en-
coding and decoding. In this study, the outputs of encoder are utilized
as features for developing building energy prediction models.

2.2.3. The generative adversarial network-based feature engineering method
As one of the most promising techniques in the field of deep

learning, generative adversarial networks (GANs) have attracted
worldwide interests for the task of generative modeling. The concept of
GAN was firstly proposed by Goodfellow et al. in 2014 [40]. As shown
in Fig. 4, the learning framework of GANs contains two models, i.e., a

generator G and a discriminator D. The generator G aims to learn a
distribution Pmodel which mimics the real data distribution Pdata, while
the discriminator G tries to distinguish whether a sample is drawn from
Pdata or Pmodel. The input data to G are usually noises drawn from a
random distribution, such as uniform or normal distributions. Assuming
the parameters of G and D are θG and θD respectively, the learning
process of GAN can be summarized as follows. Firstly, a set of random
noises (i.e., denoted as z) are drawn from a random distribution and fed
to the generator G to produce synthetic samples, i.e., G z θ( )G . Secondly,
synthetic samples are combined with real samples as input for the
discriminator D. The discriminator D is trained to identify whether a
sample is synthetic or real, while the generator G tries to fool the dis-
criminator D by generating high-quality synthetic samples that are very
close to real ones. The adversarial game played by G and D can be
expressed in the following objective function:

= + −V D G E D x E D xminmax ( , ) log[ ( )] log[1 ( )]
G D

x P x Pdata model , where D

(x) is the discriminator loss in classifying data samples, x∼ Pdata and x
∼ Pmodel indicate whether the input to the discriminator comes from the
real data samples or the generator model. GANs have been utilized for
various applications, such as image-to-image translation and text-to-
image translation [41]. Despite its power in generative modeling, GANs
are notorious for their training difficulties. To overcome this problem,
many techniques and guidelines have been proposed, such as adopting
batch normalization, dropouts and rectified linear units during the
training process [42,43].

GAN models provide an alternative approach to deriving mean-
ingful features for supervised learning. If the GAN learning process
converges, the generator G should be able to generate indistinguishable
samples from real data, while the discriminator D can capture the key
characteristics for classifying real and synthetic samples. In such a case,
the activations before the discriminator D’s output layer must convey
useful information for supervised learning. Similar approaches have
been used in the field of computer vision [43,44]. The research results
showed that GANs could learn good representations from the original
data, based on which better image classification performance was
achieved. In this study, the same idea is implemented to extract features
for developing building energy prediction models. To the best of the
authors’ knowledge, this is the first attempt in the building field to
exploit the power of GANs in analyzing building energy data. As de-
monstrated in the following sections, GANs are not only helpful for
deriving features for supervised learning, but also generating realistic
profiles on building energy consumptions. Such building energy profiles

Fig. 2. Basic architectures of feed-forward autoencoders.

Fig. 3. Basic architecture of one-dimensional convolutional autoencoders.
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could be valuable for performance benchmarking, yet this is not the
focus of this study.

2.3. Supervised learning techniques for building energy predictions

Once different sets of features are extracted, supervised learning
techniques are used to build prediction models. To comprehensively
examine the usefulness of features extracted, four representative tech-
niques, which differs in their nonlinearity handling abilities, model
architectures and inference mechanisms, are selected, i.e., the multiple
linear regression (MLR), artificial neural networks (ANN), support
vector regression (SVR) and extreme gradient boosting trees (XGB). The
MLR serves as the performance benchmark as it can only describe linear
interactions between input and output variables. The other three are
capable of capturing nonlinear interactions. The SVR and ANN are se-
lected due to their wide adoption in the building energy prediction field
[45]. The XGB is a more advanced ensemble learning technique [46]. It
is developed based on the concept of boosting trees, which has proved
to be very powerful in modeling complicated relationships [47]. The
adoption of these four supervised learning techniques can help to an-
swer a variety of problems related to the topic concerned, e.g., which
feature engineering method provides the best prediction performance
in terms of different modeling techniques.

3. Case study

3.1. Building and data descriptions

The building operation data retrieved from an educational building
in Hong Kong were used for analysis. The building mainly contains
classrooms for students, offices for university staffs, and a data center
for computing devices. It has a gross floor area of 11,000m2, out of
which approximately 80% of areas are air-conditioned. The building is
served by a complicated central air-conditioning system, including four
water-cooled chillers (i.e., three with a cooling capacity of 1932 kW
each and one with a cooling capability of 540 kW) and four cooling
towers. Six constant-speed primary and six variable-speed secondary
pumps are used for chilled water circulation, while six constant-speed
water pumps are used for distributing condensing waters.

The operation data were collected with a sampling interval of
30 min. The whole year data in 2015 were adopted for analysis. In total,
the data have 17,040 observations. The variables can be divided into
three general categories: (1) time variables (Month, Day, Hour, Minute
and Day type); (2) outdoor variables (outdoor dry-bulb temperature and
relative humidity); (3) operating parameters of the chiller plant (e.g.,
the temperatures and flow-rates of chilled water and condenser water).
The total building cooling loads were calculated based on the chilled
water flow rate, the supply and return chilled water temperature. The
whole data were divided into training and testing data sets with

proportions of 70% and 30% respectively. Standardization and one-hot
encoding were used to preprocess numerical and categorical input
variables respectively. The feature engineering and prediction model
development are performed based on the training data set, while the
prediction performance was calculated and reported based on the
testing data set.

3.2. Construction of feature sets

Prediction models are developed to forecast the one-step ahead
building cooling load based on two types of inputs: (1) external fea-
tures, which refers to the time variables (e.g., Hour and Day type) and
outdoor environment variables (e.g., outdoor dry-bulb temperature and
relative humidity) at time T+1. These variables are used to reflect the
influence of indoor occupancy and outdoor environment on building
energy. It should be noted that other environmental variables, such as
solar radiations and wind speed, may also influence the building
cooling load. However, these variables are typically not available in
practice and therefore, are neglected in this study; (2) internal features,
which are derived from the historical measurements of building cooling
loads from T-m to T, where m is the maximal time lag considered for
feature engineering. The parametric spectral density estimation method
was used to identify the intrinsic periodicities in building cooling load.
As shown in Fig. 5, the most significant frequency identified is 0.021,
which corresponds to a period of 48 time steps (i.e., 1

0.021
). Since data

samples were collected with a time interval of 30min, it indicates a
significant daily periodicity. Therefore, the maximal time lag m con-
sidered for feature engineering was set as 48, i.e., 24 h.

The feature engineering methods described in Section 2.2 were used
for feature extraction. Fig. 6 presents the cumulative variance explained
by the first twenty principal components. It is shown that the first six

Fig. 4. The learning framework of generative adversarial networks (GAN).

Fig. 5. Spectrum density estimation for the time series of building cooling load.
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principal components are capable of explaining 95% of the total var-
iance. Furthermore, the gain in total variance explained is rather small
when including extra principal components. Therefore, the number of
features k used for predictive modeling was set as six. The first feature
set consists of the first six principal components. The second feature set
was constructed by calculating the mean values of six equally divided
temporal segments in the past 24 h.

The third feature set was extracted based on a feed-forward auto-
encoder (AE). The architecture and techniques used are illustrated in
Fig. 7. The input and output layers both have 48 neurons, representing
the original building cooling load measurements in previous 24 h. The
model has three hidden layers and optimization was performed to fine-
tune the parameters, such as the dropout at different layers, the acti-
vation function used and whether applying batch normalization or not.
The number of neurons at the middle layer was set as six, corresponding
to the feature number k used in previous statistical methods. The fourth
feature set was derived based on the one-dimensional convolutional
autoencoder (CAE). The architecture and techniques used are illu-
strated in Fig. 8. It was designed in such a manner that the number of
neurons at the encoder’s output layer is six.

Fig. 9 presents the generative adversarial networks (GAN) devel-
oped in this study. To ensure the overall performance, both generator G
and discriminator D adopt the one-dimensional CAE as the basic op-
eration unit. The leaky rectified linear unit is adopted as the activation
function in hidden layers. The slope was set as 0.3 as recommended in
[48]. The input to G is sampled from a Gaussian normal distribution
with a mean of zero and a standard deviation of one. The input di-
mension was set as ten, which means that each synthetic sample on the

past 24 h building cooling load is constructed based on ten random
Gaussian noises. The discriminator D aims to distinguish whether a
sample is real or synthetic and therefore, the output layer has only one
neuron and the sigmoid function (i.e.,

+ −e
1

1 z ) was used for classification.
A fully-connected layer, which has six neurons, was designed before the
output layer for feature extraction. It should be mentioned that GAN
models are quite difficult to train and there is no easy way to quanti-
tatively evaluate the GAN performance. In this study, the performance
of GAN is assessed from two perspectives: (1) whether the losses of G
and D are behaving normally, i.e., neither G nor D dominates the
learning process and they are actually learning towards equilibrium; (2)
whether the generated synthetic samples are close to real 24 h building
cooling load profiles or not. If so, it indicates that G has learnt how to
generate realistic samples and therefore, D has learnt how to distinguish
real and synthetic samples. As examples, Figs. 10 and 11 present ex-
amples of synthetic 24 h cooling load profiles generated by G and real

Fig. 6. The cumulative variance explained by principal components.

Fig. 7. The schematic of AE used for feature engineering.

Fig. 8. The schematic of CAE used for feature engineering.
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cooling load profiles respectively. Considering that the synthetic pro-
files generated are very close to real ones, the features extracted by D
should contain useful information about the intrinsic data character-
istics for predictive modeling.

3.3. Development of building cooling load prediction models

Given a feature set and a supervised learning algorithm, the pre-
diction model parameters were optimized through five-fold cross-vali-
dation. The generalization performance was obtained by applying the
optimized prediction models to the testing data sets. The resulting ac-
curacies were used as indicators to reflect the quality of different fea-
ture sets.

More specifically, the Gaussian radial basis kernel was used for SVR
model development. Two key parameters, the complexity parameter C
and the smoothing parameter sigma, were optimized to ensure the
model performance while avoiding the problem of over-fitting. A larger
C leads to a more complicated model while a larger sigma leads a more

smooth and flexible decision boundary. The candidate values of these
two parameters take a form of 2x, where× are integers ranging from
−10 to 10. A three-layer multi-perceptron architecture was used for
developing ANN models. Optimization was performed to select the
most suitable activation functions for the input and hidden layers, i.e.,
sigmoid, Tanh and ReLU (i.e., rectified linear units). The number of
hidden neurons was set as 3 based on one of the rules of thumbs in
neural network design, i.e., +No ofinputs No ofoutputs. .

2
[49]. XGB models can

be regarded as a decision tree-based ensembling method. In this study,
the number of trees was set as 500. Optimization was performed over
the tree depth and learning rate. The tree depth specifies the maximal
depth of each individual decision tree. The candidate values were set
from two to five. The learning rate quantifies how quickly a tree model
adapts to the errors in pervious iteration. It was set between 0.0025 and
0.05 with a decimal increment of 0.0025. In general, a smaller learning
rate helps to avoid the problem of overshooting, yet it may require
more iterations and computation time for convergence.

Fig. 9. The schematic of GAN used for feature engineering.
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4. Results and discussions

All the computation works were performed based on the R pro-
gramming language and the deep learning models were realized based
on the Keras package [48,50]. Three accuracy metrics, i.e., the root
mean squared error (RMSE), the mean absolute error (MAE) the coef-
ficient of variation of the root mean squared error (CV-RMSE), were
used as performance indicators. The first two are scale-dependent me-
trics, which can describe errors in their original scales. The latter is a

scale-independent metric, which is more suitable for performance
comparison across different data sets. The formulas used are shown in
Equations-1 to 3 respectively, where y and ̂y are the actual and pre-
dicted values, and n is the total number of observations.


=

∑ −
=RMSE

y y
n

( )i
n

i i1
2

(1)


=

∑ −
=MAE

y y
n
| |i

n
i i1

(2)

Fig. 10. Synthetic samples generated on 24 h building cooling load.

Fig. 11. Real samples on 24 h building cooling load.
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4.1. Prediction performance in terms of supervised learning techniques

Figs. 12–15 depict the one-step ahead prediction performance given
different feature sets and supervised learning techniques. The resulting
accuracy metrics are reported in Table 1.. It should be mentioned that
performance degradation is typically expected when applied for multi-
step ahead prediction. The same data set was used to investigate the
performance of different strategies for 24 h ahead building cooling
predictions [51]. The results indicated that prediction errors generally
enlarge 2 to 2.5 times along the 24 h prediction horizon, i.e., if the CV-
RMSE at time step T+1 is 10%, then the CV-RMSE may range from
20% to 25% at time step T+48 (considering a 30min time interval)
[51]. As indicated in [52,53], a model is applicable for engineering
purposes if the CV-RMSE is below 30% when using hourly data. It is
shown that all the nonlinear modeling techniques are capable of gen-
erating predictions with CV-RMSE less than 30%. By contrast, the
benchmarking modeling technique, i.e., multiple linear regression, can
only generate fairly accurate predictions using the GAN-based features.
The CV-RMSEs calculated for SVR and ANN models are quite close,
indicating that these two supervised learning techniques have rather
similar prediction power for building energy predictions. Given the
same feature set, the XGB models always generate the best prediction
performance. It indicates that compared with single model-based pre-
dictions, the ensembling methods, which rely on a number of base
models to generate final predictions, are more accurate and reliable. It
should be noted that the supervised learning techniques used in this
study are only representatives of available techniques. Other techni-
ques, such as random forests and time series models, can also make
high-quality predictions on building energy consumptions [45]. In
practice, the main consideration for supervised learning technique

selection is the balance between prediction accuracy and model inter-
pretability. Linear models are generally more interpretable, yet the
prediction accuracy may not be satisfactory. Meanwhile, nonlinear
techniques, especially ensembles of nonlinear models, can be very ac-
curate at the cost of model interpretability. Therefore, a promising re-
search direction is to develop post-mining methods to enhance the in-
terpretability of complicated prediction models [54,55]. The insights
obtained can help building professionals to better integrate domain
expertise with data-driven inference mechanism learnt for decision-
makings.

4.2. Prediction performance in terms of feature engineering methods

To further evaluate the usefulness of different feature engineering

Fig. 12. Prediction performance based on different feature sets and MLR.

Fig. 13. Prediction performance based on different feature sets and ANN.

Fig. 14. Prediction performance based on different feature sets and SVR.

Fig. 15. Prediction performance based on different feature sets and XGB.

Table 1
Prediction performance on testing data set.

Features Metrics MLR SVR ANN XGB

PC-based features RMSE (kW) 209.2 137.1 159.3 122.4
MAE (kW) 137.9 82.6 96.2 76.2
CV-RMSE 32.9% 21.6% 25.1% 19.3%

STAT-based features RMSE (kW) 217.8 160.4 158.2 122.8
MAE (kW) 142.4 93.0 92.3 74.5
CV-RMSE 34.3% 25.3% 24.9% 19.3%

AE-based features RMSE (kW) 191.6 128.1 149.1 120.7
MAE (kW) 125.8 75.0 90.4 73.6
CV-RMSE 30.2% 20.2% 23.5% 19.0%

CAE-based features RMSE (kW) 191.2 131.2 143.0 116.2
MAE (kW) 127.3 77.9 85.6 72.1
CV-RMSE 30.1% 20.7% 22.5% 18.3%

GAN-based features RMSE (kW) 167.9 135.3 127.5 112.6
MAE (kW) 117.1 79.6 82.1 71.1
CV-RMSE 26.4% 21.3% 20.1% 17.7%
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methods for short-term building cooling load predictions, the RMSEs
along the 24 h prediction horizon were calculated and visualized in
Fig. 16 using the multiple linear regression and the direct multi-step
ahead prediction approach [51]. The results are in accordance with
those obtained in one-step ahead predictions. To summarize, given a
supervised learning technique, the principal component-based and
summarizing statistic-based features lead to the worst prediction ac-
curacy. It is in accordance with expectations, as these two feature en-
gineering methods can only derive linear features, i.e., principal com-
ponents and summarizing mean values are in essence linear
combinations of the original data. Such features cannot preserve high-
level characteristics in the original data, e.g., the temporal dependency
in time series data. By contrast, the features extracted by the other three
deep learning-based methods are more useful for building energy pre-
dictions. The features extracted by feed-forward autoencoders can be
regarded as nonlinear transformations of the original data. The re-
sulting predictions are more accurate than their linear counterparts,
i.e., features extracted by principal component analysis. As indicated by
the research results, the features extracted by one-dimensional CAE can
slightly enhance the prediction performance when using nonlinear
modeling techniques. This may due to the unique capability of one-
dimensional CAE in capturing temporal dependencies in time series
data.

The features extracted by the GAN-based method typically lead to
the best prediction performance. Such features are generated using a
unique generative approach, i.e., rather than relying on the limited
amount of training data alone, synthetic data are generated to facilitate
the feature extraction process. Consequently, the feature extraction
model (i.e., the discriminator D) can have a more complicated archi-
tecture without worrying about the over-fitting problem. In addition,
once a reliable GAN model is developed, the output of generator G can
be used to produce realistic samples on building cooling load profiles
(as shown in Fig. 10). Such profiles can be further used for other
building management tasks, e.g., simulating normal behaviors in
building operations and calculating benchmarks for daily energy con-
sumptions. Despite its great potential in analyzing building operation
data, it should be mentioned that GANs are rather difficult to train.
Hyperparameter tuning is a must to ensure the success of GAN model
development. Further in-depth studies are needed to provide guidelines
and references for GAN model development in the building field.

4.3. Practical values of deep learning-based feature engineering methods

The practical values of deep learning-based feature engineering
methods can be summarized into two aspects, i.e., dimensionality re-
duction and data denoising. The first is obvious, as a smaller number of
features are extracted to preserve the information in the original data.
In such a case, the total number of observations needed for reliable
model development is reduced, making it more flexible and less

computationally expensive for practical applications.
In addition, the quality of building operation data can be poor due

to the existence of many missing values, outliers and noisy measure-
ments. As a result, the performance of prediction models developed
may not be reliable and robust. To illustrate the usefulness of deep
learning-based feature engineering methods in handling noisy data, an
experiment was designed as follows: masking noises with zeros were
randomly added to the original data with four levels of probabilities of
5%, 10%, 15% and 20%. Different sets of features were extracted and
used for prediction model development. The XGB was used as the su-
pervised learning technique. The resulting CV-RMSEs are shown in
Fig. 17. It is evident that there is an increasing trend of CV-RMSEs as the
masking noise levels increase. The two linear feature engineering
methods, i.e., STAT and PC-based methods, still result in the worst
performance. Meanwhile, better resulting performance can be obtained
using features extracted by deep learning-based methods. The GAN-
based method is especially useful to ensure the performance given noisy
data. This may due to the generative modeling nature of GAN models.
In essence, some of the synthetic samples generated by the generator G
can be regarded as noisy samples. Consequently, the discriminator has
the potential to extract high-level features for data denoising. In prac-
tice, such feature engineering methods are helpful to ensure the pre-
diction performance using relatively low-quality building operation
data.

5. Conclusions

Accurate and reliable predictions on building energy consumptions
are very helpful for the development of building energy conservation
measures. In practice, it can be very difficult to select or construct
features from the original data for building energy predictions, as
building operation data are highly correlated and noisy. Conventional
feature engineering methods are heavily dependent on engineering
experience, which are neither efficient nor effective for generalization
and automation purposes.

To tackle this challenge, this study exploits the power of the state-
of-the-art deep learning techniques in automatically extracting valuable
features for building energy predictions. Three deep learning-based
feature engineering methods have been developed based on the use of
fully-connected autoencoders, one-dimensional convolutional auto-
encoders and generative adversarial networks respectively. Their po-
tentials in extracting valuable features for predictive modeling have
been assessed and compared with two conventional data-driven feature
engineering methods. The research results show that deep learning-
based feature engineering can lead to evident improvement in building
energy predictions. The features extracted by the fully-connected au-
toencoders are in essence nonlinear transformations of the original
data. It generally leads to better performance than its linear counter-
parts, i.e., principal components and summarizing statistics. Slightly

Fig. 16. The RMSEs along the 24 h prediction horizon using the multiple linear
regression and direct multi-step prediction approach. Fig. 17. Model performance at different masking noise levels.
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better prediction performance can be obtained using features extracted
by one-dimensional convolutional autoencoders. It indicates that one-
dimensional convolutional autoencoders are capable of extracting
useful temporal relationships in time series data for predictive mod-
eling. More importantly, this study validates the usefulness of gen-
erative adversarial networks (GANs) in constructing high-level features
from building operation data. The GAN-based feature engineering
method adopts a generative approach for feature extraction, which is of
great significance to tackle the challenge of extracting high-level fea-
tures from limited and poor-quality building operation data. It should
be noted that GANs can be very difficult to train and usually suffer from
problems of non-convergence, vanishing gradients and unbalanced
learning between the generator and discriminator. In this study, a trial-
and-error approach was adopted for constructing GANs. Future study
will focus on providing useful insights and guidelines for developing
GANs for building energy data. In addition, the effectiveness of pre-
dictive modeling methods developed will be tested and validated using
data from a variety of buildings to ensure the generalization perfor-
mance [56]. As final words, the deep learning-based feature en-
gineering methods proposed in this study are purely data-driven, which
helps to fully automate the building energy prediction process. The
research results help to bridge the knowledge gap between deep
learning and building operations. It can be used as prototypes for de-
veloping more advanced tools for building energy predictions.
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