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ABSTRACT | Heating, ventilation, and air conditioning (HVAC)

systems are an important target for efficiency improvements

through new equipment and retrofitting because of their large

energy footprint. One type of equipment that is common in

homes and some offices is an electrical, single-stage heat pump

air conditioner (AC). To study this setup, we have built the

Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy

Efficiency (BRITE) platform. This platform allows us to actuate

an AC unit that controls the room temperature of a computer

laboratory on the Berkeley campus that is actively used by

students, while sensors record room temperature and AC

energy consumption. We build a mathematical model of the

temperature dynamics of the room, and combining this model

with statistical methods allows us to compute the heating load

due to occupants and equipment using only a single temper-

ature sensor. Next, we implement a control strategy that uses

learning-based model-predictive control (MPC) to learn and

compensate for the amount of heating due to occupancy as it

varies throughout the day and year. Experiments on BRITE

show that our techniques result in a 30%–70% reduction in

energy consumption as compared to two-position control,

while still maintaining a comfortable room temperature. The

energy savings are due to our control scheme compensating for

varying occupancy, while considering the transient and steady

state electrical consumption of the AC. Our techniques can

likely be generalized to other HVAC systems while still main-

taining these energy saving features.

KEYWORDS | Air conditioning (AC); building automation; energy

efficiency; learning; model-predictive control (MPC)

I . INTRODUCTION

Buildings account for 73% of the electricity and 40% of

greenhouse gas emissions in the United States [1], [2].

Heating, ventilation, and air conditioning (HVAC) com-

pose 33% of building energy usage, making this an attrac-

tive target for reductions [1]. Several parallel directions are

being taken towards the aim of reducing HVAC energy,

one of which is the design of new, more efficient equip-
ment. However, buildings and equipment are often slowly

replaced [3]. This has led to interest in retrofitting HVAC

to improve efficiency.
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The simplest way to retrofit is to only change the soft-
ware that controls the HVAC, but this is a challenging

problem because of the large variety of physical effects that

are used by HVAC equipment. Many homes use a single-

stage heat pump that cools air at a constant rate for the

entire building. In contrast, some large buildings use va-

riable air volume (VAV) systems to centrally cool air that is

partitioned into different amounts for each room. Some

HVAC systems incorporate thermal storage tanks that
freeze liquid at night and then provide cooling by allowing

it to melt during the day.

HVAC equipment requires a separate design process

tailored to its particular physical modalities. Within the

cyber-physical system (CPS) community, the focus of re-

search has been on modeling and control for VAV systems

[4]–[7] or thermal storage tanks [8]. Occupants and equip-

ment generate heat that raises the temperature of rooms,
and existing HVAC control struggles with these effects

because of their significant variation over time. Current

work in this area concerns combining occupancy sensors

with models of human behavior to estimate the number of

occupants in different rooms [9].

We focus on reducing the energy usage for an electric,

single-stage heat pump air conditioner (AC) that cools a

single area, and our work is distinguished from past work
by three aspects. First, this HVAC equipment is common

in homes and has not been extensively studied by the CPS

community. Second, modeling and statistics are used to

estimate the heating load (i.e., amount of thermal energy

transfer to the building) of occupants and equipment using

only a temperature sensor. Third, we design a control

scheme that improves efficiency by explicitly adapting to

the occupancy heating load. These techniques are expected
to generalize to other HVAC systems, though implementa-

tion and modeling details will vary depending upon equip-

ment physics.

The second point is important from a general CPS

viewpoint. One approach to solving CPS problems is to

study the integration and communication of large numbers

of sensors. For this particular application, we take an al-

ternative approach. We evaluate how more intelligent
computation may enable a reduction in the number of

sensors needed to achieve a given task. This is done by

constructing mathematical models that incorporate the

physical aspects of the system, and then designing sta-

tistical schemes that combine these models with measure-

ments to reduce the amount of needed infrastructure.

In order to conduct experiments, we have built the

Berkeley Retrofitted and Inexpensive HVAC Testbed for
Energy Efficiency (BRITE). The BRITE testbed controls

the room temperature of a computer laboratory on the

Berkeley campus that is actively used by students. A com-

puter actuates the AC unit by relaying computed control

actions through a local area network (LAN) to the thermo-

stat. Sensors are able to measure the room temperature

and power consumption of the AC.

BRITE is a living laboratory, and so its large variations
in weather and occupant behavior make it difficult to di-

rectly compare different control strategies. To overcome

this challenge, we cyber-physically compare control meth-

ods using a mixture of experiments and simulations. This

allows for a more fair comparison by using identical wea-

ther and occupancy conditions, but this does introduce

some error into the comparisons because of modeling

mismatch. To alleviate these issues, we alternate between
the control schemes we use for experimentation and

simulations.

We implement a new control technique on BRITE

known as learning-based model-predictive control (MPC)

[10], which has provable properties considering its safety

and robustness. It combines models with statistics to esti-

mate occupancy heating load from only temperature mea-

surements and then compensate for it within the control
action, thereby reducing the amount of room overcooling

and thus saving energy. Our experiments show that

learning-based MPC reduces energy consumption by

30%–70% compared to two-position control, which is

the control scheme used by a typical thermostat [11].

A. CPS Aspects of Single-Stage Heat Pump Control
Heat pumps [12] are commonly used in homes to pro-

vide AC, and they use electrical energy to run a motor that

compresses gas. It is the subsequent expansion of this

compressed gas that is able to provide cooling for air that is

then delivered to the entire building. Most heat pumps

have motors with one fixed speed and are called single

stage. Multistage heat pumps can run the compressor

motor at different speeds, but they are less common. We

focus on single-stage equipment in our work because
1) this is the existing equipment in the room that we use in

BRITE, and 2) the control scheme we develop can be ex-

tended to multistage equipment through the use of appro-

priate pulse-width modulation (PWM).

The physics of heat pumps leads to particular energy

characteristics, and similar behavior occurs in other HVAC

systems. Understanding these features is important for the

design of efficient HVAC systems, and is reflective of
insights gained from a CPS viewpoint. A tighter integration

of the software to the physics of the HVAC allows for

improved performance by reducing the conservativeness of

the control schemes. In the case of HVAC, comfort is

equivalent to keeping the room temperature within a range

of temperatures [13], and conservativeness is how close the

temperature is kept towards the boundaries of this range.

Keeping temperature near the boundaries of comfort
uses less energy, because less heat transfer is required. In

the case of AC, two-position control means that the AC

turns on when the room temperature exceeds Ton and

turns off when the temperature is below Toff . Because of its

physics, the AC continues to cool for a few minutes even

after it is turned off [14]. This actually represents overcool-

ing and is a major cause of inefficiency. The obvious fix is
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to set Toff to be nearly identical to Ton; however, this is not
practical because of the physics of the equipment.

A heat pump has high transient power consumption

when it is turned on, and then it uses lower amounts of

power at steady state. This transient power is due to inrush

current (a brief period of high current flow when turning

on the electric motor that drives the compressor in the

heat pump) and an increased load on the electric motor at

startup (the pressure of the gasses in the heat pump are
initially out of equilibrium [15]). The transient power

consumption of a heat pump puts a limit on its switching

frequency, because otherwise the equipment behaves inef-

ficiently and can also be damaged.

The high transient power usage acts as a penalty for

turning the AC on. Efficient control schemes need to ba-

lance the efficiency from turning the heat pump on and off

frequently (this reduces overcooling) with the added ener-
gy consumption and physical fatigue of frequent switching.

This tradeoff can be handled by the learning-based MPC

technique, which picks control actions for the AC that

minimize a cost (consisting of steady state energy con-

sumption, transient energy consumption from switching,

and deviation from desired temperature) subject to the

thermal dynamics of the room and constraints on the

allowed temperatures of the room.

II . BERKELEY RETROFITTED AND
INEXPENSIVE HVAC TESTBED
FOR ENERGY EFFICIENCY

BRITE is a system for testing different control strategies on

an AC unit that cools a computer laboratory on the
Berkeley campus, and it is shown in Fig. 1. Though it is

built using commodity parts, the computers can be re-
placed with microcontrollers. The strength of this struc-

ture is that it scales to building-wide systems. Moreover,

our MPC schemes are computationally scalable because of

their convexity.

In this testbed, the LoCal server gathers sensor data

and stores this in a simple measurement and actuation

profile (sMAP) database [16]. A control computer accesses

the Internet and LoCal server to get weather forecasts and
sensor data, and it runs a learning-based MPC scheme that

computes a control input that is sent through the LoCal

server to the thermostat. The thermostat transmits a

corresponding signal to the AC.

A. LoCal
The Berkeley LoCal project aims to produce a network

architecture for localized electrical energy reduction,

generation, and sharing by examining how pervasive in-

formation can fundamentally change the nature of these

processes [17]. A key component of this is the use of sMAP

[16] to exchange physical data about the systems involved.

This allows producers of physical information to directly

publish their data in a format for consumption by a diverse

set of clients. We use temperature measurements from a
networked thermostat in BRITE, though we also have the

capability to measure plug-load [18] and wireless temper-

ature readings. The ability to easily integrate streams of

sensor data is critical to the scalability of BRITE to entire

buildings.

B. Room, Air Conditioner, and Thermostat
The BRITE testbed shown in Fig. 1 is deployed in a

student computing laboratory on the ground floor of a

Fig. 1. The Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency (BRITE) is a system built on the Berkeley campus that

allows testing of different control strategies for controlling an AC in order to explore tradeoffs between energy consumption and

tracking a temperature setpoint.
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large engineering building. The room is 640 square feet,
has external windows on its south and west walls, and

contains 16 desktop computer workstations and two laser

printers. Occupancy of the room peaks at over 20 in-

dividuals and is constantly varying depending upon the due

dates of projects, assignments, and exams. An important

reason that this room was chosen for the testbed is that it

has its own HVAC equipment, which allows us to do

experiments independent of other rooms.
A Proliphix brand NT160e model thermostat controls

the AC. It is a modern thermostat with networking func-

tionality that allows computers on a shared network to

communicate with it and control it. We can transmit

commands to the thermostat and also receive diagnostic

information on the thermostat settings, current HVAC

state, and room temperature.

C. Control Computer
We use a dedicated control computer to avoid disrupt-

ing processes running on the LoCal computer, though their
combined functionality can be implemented on a single

microcontroller. The control computer runs a 64-b version

of the Ubuntu operating system, and the control loop is

implemented in MATLAB: The learning-based MPC [10]

uses the SNOPT solver [19] from the TOMLAB library, and

polytopes are handled using the MPT toolbox [20]. A

Python script downloads weather forecasts from the

National Oceanic and Atmospheric Administration’s
(NOAA’s) National Weather Service.

D. Metrics for Human Comfort
The objective of BRITE is to minimize energy con-

sumption while keeping occupants comfortable. However,

there are multiple ways to quantify comfort. The ANSI/

ASHRAE standards [13] are defined in terms of the pre-

dicted mean vote (PMV), which is a complex function of

indoor air temperature, human activity, relative air velo-

city, the occupants’ clothing, and other variables that are

difficult to measure [21]. The Occupational Safety and

Health Administration (OSHA) [22] does not have regu-
lations but provides guidelines of 68–76�F (about 20 �C–

24.4 �C). Alternative metrics are defined in terms of

temperature deviation: category A, B, and C thermal re-

quirements [13], respectively, dictate a temperature range

of 2 �C, 4 �C, and 6 �C.

These alternatives specify temperature bands and sim-

plify the design of HVAC systems. In experiments on the

BRITE testbed, we keep the temperature near the middle
of comfort (22 �C) and try to satisfy category A require-

ments, because these are the strictest and consume the

most energy. More specifically, category A is used as a

range preference for the learning-based MPC and

category B are hard constraints on the temperature range.

Future directions can consider smart methods for switch-

ing between different category requirements based on, for

instance, network-level load and demand signaling or

occupancy estimates.

III . ELECTRICAL CHARACTERISTICS
AND ENERGY CONSUMPTION OF
A SINGLE-STAGE HEAT PUMP

Fig. 2 shows experimentally measured data of a typical

power consumption profile for the HVAC in BRITE. A

striking feature is that there are both transient and steady

state behaviors. There is a transient spike in power con-

sumption immediately after the heat pump is turned on

that lasts for about 1 min, before the power consumption
reaches a steady state. Intuitively, the large transient is a

penalty for turning the heat pump on. Physically, the

transient power consumption is due to inrush current

drawn by the electric motor in the compressor of the heat

pump, as well as due to nonequilibrium pressure condi-

tions in the heat pump [15].

As mentioned earlier, this profile highlights some im-

portant issues regarding energy usage. The transient spike
in power consumption suggests an objective that mini-

mizes switching. This is not typically considered in an

explicit manner, and in fact makes the implementation of a

controller in digital hardware difficult unless some approx-

imation is used. Furthermore, the steady state energy

usage is linear in the control, which matches the cost used

in [5] and differs from the more commonly used quadratic

cost [6].

A. Pulse-Width Modulation Control
The single-state heat pump is strictly speaking a hybrid

system [23], [24] because it has two modes corresponding

to the pump being on or off. Fortunately, we can consid-

erably simplify the design of a controller by considering

sampled control. As such, we use MPC to compute a new

Fig. 2. Experimental data of a typical power consumption profile

during actuation in the BRITE testbed are shown. The first vertical

dashed line indicates the time when the heat pump turns on, the

second indicates the time when the power reaches steady state, and

the third indicates the time when the heat pump turns off. For this

particular power profile, the amount of total energy consumed by the

transient and steady state is labeled in the legend.
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control action u½k� at intervals of once every 15 min. We
chose this rate because switching more frequently than

once every 10–15 min can physically damage the heat

pump. PWM is used to convert the discrete time control

u½k� into a continuous signal that turns the AC on or off

[25], and so u½k� can also be interpreted as a duty cycle.

There is an important note to make regarding why the

constraints on the input for the MPC are u½k� 2 ½0; 0:5�.
The reason for the choice of 0.5 as an upper value is
because the thermostat does not stop cooling the room

when it is turned off. This is discussed in more detail in

Section IV, but the choice of 0.5 ensures that the control

action at one discrete time sample does not affect the

control action at the next one.

B. Measuring the Electrical Energy
Consumption in BRITE

It is important to be able to compute the energy con-

sumed by the AC in the BRITE platform, given the input

that the AC receives. An estimate of the energy consump-
tion is used in the cost function of MPC, and it is useful for

being able to compare different control schemes. To be

able to provide this equation, we need to make a few defi-

nitions. Define the vector um ¼ ðu½m� . . . u½mþ N � 1�Þ.
The term kumk0 counts the number of nonzero entries in

the vector um. Also, the values r; � are constants which are

used to compute the energy consumption. The value N is

the number of discrete time steps (recall that each time
step corresponds to 15 min) over which the energy con-

sumption is to be computed.

The steady state energy consumption of the AC over

N=4 hours in units of kilowatt hours (kWh) is given byPN�1
k¼0 r=4 � u½mþ k�, where r ¼ 3.7 kW is the average rate

of steady state energy consumption in the BRITE platform

(compare to Fig. 2) and the value 4 is used to compensate

for the fact that u½mþ k� is the control for 1/4 of an hour.
Furthermore, the AC consumes � ¼ 0.015 kWh of energy

every time we turn the AC on; this corresponds to the area

of the triangle in Fig. 2 formed by the transient energy.

The total energy used over N time steps is given by

Eactual ¼
XN�1

k¼0

r=4 � u½mþ k� þ �kumk0: (1)

Unfortunately, the kumk0 term is not convex in um.

Convexity is important for the computations of the MPC
that has to solve an optimization problem at each step. To

simplify the computations, we make a standard convex

relaxation [26] and replace the term kumk0 with kumk1.

This relaxation is powerful: When it is used in the cost

function of an optimization problem, it actually leads to

having many of the u½mþ k� be equal to exactly zero [26].

In this way, it can reduce switching of the AC.

This approximation yields a convex equation for the
energy consumed

PN�1
k¼0 r=4 � u½mþ k� þ �kumk1. How-

ever, we have u½mþ k� � 0, and so we can further simplify

the convex cost for energy consumption to

Econvex ¼
XN�1

k¼0

ðr=4þ �Þ � u½mþ k�: (2)

What is surprising about this is that a cost for energy that is

linear in the length of control action automatically con-

siders a cost for switching, as long as the inputs u½mþ k�
are constrained to be nonnegative. Stated in another way,
this means that a cost that is linear in the duty cycle of the

control inherently considers the tradeoff between switch-

ing too frequently and the length of the duty cycle.

In practice, (1) is used if the actual energy needs to be

computed. On the other hand, (2) is used if a control

action needs to be computed by the MPC. Having these

two formulations gives considerable flexibility.

IV. SYSTEM IDENTIFICATION
OF COOLING DYNAMICS

An important step towards realizing efficient control

schemes for the BRITE testbed is building a mathematical

model that describes the impact of weather, occupancy,

and AC operation on the temperature of the room. It is

important because all MPC schemes inherently require a

nominal model in order to be able to optimize system

performance. More importantly, identifying a model

allows us to estimate the heating load due to occupancy
from only temperature measurements. This enables eval-

uation of the importance of occupancy [6], [27] and tech-

niques that compensate for it.

Though building simulator software [28], [29] models

complicated thermodynamic and fluid effects, experimen-

tal data collected from buildings show that linear models

with exogenous inputs [4]–[6], [27] can often be used to

describe many rooms. The main physical effect is convec-
tive heat transfer and is described by Newton’s law of

cooling. This is a linear ordinary differential equation

(ODE), and so it may be abstracted as a resistor–capacitor

network [4]–[6].

A. Discrete Time Model
There is a Bdelay[ from when the AC is turned off and

when it stops cooling the room, due to the dynamics of the
heat pump. Specifically, the evaporator which cools the air

does not instantly warm up and continues to cool air for

some time after the heat pump is turned off [14]. We begin

with a discrete time model where each time step is sepa-

rated by Ts ¼ 15 min. The advantage of this approach is

that the AC behavior gets lumped into a single term that

encompasses the modes where the AC is on and then
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turned off but still cooling. This makes it easier to do the
modeling.

With this approach and inspired by the physics of

convective heat transfer, we start with the model

T½nþ 1� ¼ krT½n� � kcu½n� þ kww½n� þ q½n� (3)

where T½n� 2 ½15; 30� is the temperature of the room in

degrees Celsius, kr > 0 is the time constant of the room,

kc > 0 is the change in temperature over 15 min in degrees

Celsius caused by cooling for a duty cycle of u½n� 2 ½0; 0:5�,
kw > 0 is the time constant for heat transfer from the room
to the outside, w½n� is the outside temperature in degrees

Celsius, and q½n� is change in temperature over 15 min due

to the heating from occupancy of humans and equipment

within the room, as well as other external inputs, in de-

grees Celsius. The time constants here are dimensionless.

B. Parameter Identification
We collected data from 12:00 p.m. to 5:30 a.m. on a

weekday using the BRITE testbed. This portion of the day

was used because it exhibits a variety of occupancy levels.

The room is actively used by students during the afternoon

and evening, with fewer students using the room late at
night and early in the morning.

Generally speaking, parameter estimation is usually

more accurate when the control inputs are independent of

the system states or external inputs (i.e., weather and oc-

cupancy). To ensure that this was the case, we actually

applied a random input with uniform distribution over

½0; 0:5� at each discrete time step; the corresponding PWM

control is shown in Fig. 3(a). Because this only needs to be
done once and over a span of about a day, it may be rea-

sonable to allow the temperature in actual implementa-

tions to be unregulated for this day. Future work includes

designing methods that keep the temperature in a com-

fortable range while still sufficiently exciting the system.

Because we have measurements of T, w½n�, and u½n�, the

model is linear with respect to the parameters kr, kc, and

kw. On the other hand, q½n� is not known and is expected to
be highly nonlinear with respect to time, because it incor-

porates heating due to human occupancy and equipment in

the room. Consequently, standard linear system identifi-

cation techniques cannot be used. Identification of models

with the form given in (3) more generally falls into the

class of problems known as semiparametric regression of

partially linear models [30], [31]. An alternative approach

is to parametrize q½n�, with say a polynomial or spline basis,

Fig. 3. At each discrete time step, we applied a randomly generated input, which is the duty cycle of the PWM over 15-min periods, taken

from a uniform distribution ranging over ½0;0:5�. This was done over a period of the day (12:00 A.M. to 5:30 A.M.) during which the room is both

in and not in use. Using semiparametric regression [31], we identified both a discrete time model (4) and the term q½n� which is given in

units of degrees Celsius and includes heating due to occupancy, equipment, and other external inputs. The measured room temperature is

given in units of degrees Celsius by the solid line, and a simulation of our model in units of degrees Celsius is shown by the dashed line.

The simulation uses the same inputs as provided to the BRITE platform over this range, and the initial condition of the simulation is taken

to be the experimentally measured temperature. The simulation has a root-mean-squared (RMS) error of 0.10 �C. (a) Random PWM input.

(b) Heating due to occupancy. (c) Experimental (solid) and simulated (dashed) temperature.
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and then identify all parameters using nonlinear regres-
sion. The difficulty with this is the uncertainty associated

with q½n�.
Using the technique given in [31], we identified the

parameters of the model

T½nþ 1� ¼ 0:64 � T½n� � 2:64 � u½n� þ 0:10 � w½n� þ q½n�
(4)

where q½n� is shown in Fig. 3(b). The experimental room

temperature is the solid line in Fig. 3(c). Similarly, the

temperature simulated by the model (4) is the dashed line
shown in Fig. 3(c), and the initial condition for the simu-

lation was taken from the experimental measurements.

Furthermore, the simulation was conducted with the same

inputs as were applied to the real BRITE system. The RMS

error of the simulation is 0.10 �C. The plots show that the

model fits reasonably well to the measured temperature

data.

C. Impact of Occupancy
The identified model (4) shows that the role of occu-

pancy is significant in the temperature dynamics of the

room, confirming the intuition of [6] and results of [27].

The function q½n� has an average value of 6.98 �C, and it is

highly nonlinear with respect to time: It varies by up to

0.61 �C depending on what time of day it is. Furthermore,

there are fluctuations over both long and short time

horizons.
The heat generated by occupancy and equipment q½n�

displays interesting features. The room is a computer

laboratory used by students at their own convenience and

shows characteristics consistent with this role. The heat

input q½n� increases from lunchtime and peaks at 1 p.m.,

while the outside temperature peaks at 2 p.m. The

occupancy has quick changes in its direction at 3 p.m.

and 5 p.m. Finally, it is relatively constant from 8 p.m. to
5 a.m., which is typically when there are few or no students

in the room.

The large fluctuations have a major impact on the de-

sign process of a control scheme. This is because the

nominal model for which a controller is designed can be

inaccurate by 0.61 �C (in our case) because of varying

levels of occupancy. This causes issues with respect to ef-

ficiency, because standard MPC requires accurate models
to provide high performance. It is for this reason that we

make use of learning-based MPC [10] to design the con-

troller. It will estimate occupancy by measuring the tem-

perature of the room and comparing it to what is expected

by the model (4).

D. Modeling the Two-Position Control of Thermostat
For the purpose of comparing the energy consumption

of different control strategies, it is useful to identify a

model of the two-position control of the thermostat. The
thermostat does its control in continuous time, and so this

model is an ordinary differential equation. Part of the

model is derived from a statistical analysis of temperature

data from BRITE gathered over a 20-h period. On average,

the thermostat turns the AC on when the temperature

reaches 22.8 �C (standard deviation of less than 0.1 �C),

and it turns the AC off when the temperature reaches

22.4 �C (standard deviation of 0.1 �C). The thermostat has
a feature called a heat anticipator that adjusts the top and

bottom temperature thresholds, in an effort to conserve

energy and reduce overcooling. We do not model this

behavior. Furthermore, it takes the AC an average of 354 s

(standard deviation of 75 s) to stop cooling the room after

it is turned off. Though this is due to the internal dynamics

of the heat pump, we approximate this by assuming that

the AC stops cooling after a fixed time.
We again used semiparametric regression on data from

BRITE to estimate a continuous time model for the two-

position control. The time constants for the room and heat

transfer to the outside were taken from the discrete time

model (4) and converted into continuous time constants by

doing the reverse of an exact discretization. The model

identified is

_T ¼ �5:0� 10�4 � T þ 1:4� 10�4

� wðtÞ � 1:2� 10�3 þ qðtÞ (5)

if the AC is turned on or for the first 354 s after it is turned

off. Otherwise, the dynamics are given by

_T ¼ �5:0� 10�4 � T þ 1:4� 10�4 � wðtÞ þ qðtÞ: (6)

In our model, the AC turns on when the temperature ex-

ceeds Ton ¼ 22.8 �C, and it turns off when the tempe-

ratures goes below Toff ¼ 22.4 �C.

Visually examining the measured [Fig. 4(a)] and simu-
lated [Fig. 4(b)] temperature under two-position control

indicates that there are several modeling errors; many of

these are previously mentioned, but we collect them into

one location for clarity. The temperature in the simulation

rises slower than on BRITE, and this indicates that the

identified time constant is slower than it should be. Fur-

thermore, the model does not incorporate the internal

dynamics of the heat pump or the thermostat’s heat anti-
cipator logic. Also, there is variation in the steady state and

transient energy consumption that is not captured in (1),

which is used to make energy estimates.

Despite the modeling errors and simplifications, the

simulation and (1) are reasonable proxies. The true

[Fig. 4(a)] and simulated [Fig. 4(b)] temperatures of the

BRITE platform under two-position control over a period
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starting at midnight share similar qualitative features. The

occupancy heating qðtÞ is not shown because it displays

characteristics similar to Fig. 3(b) and that in [27]. More-

over, the true energy consumed by the AC was measured to

be 8.6 kWh, computed by (1) to be 8.6 kWh, and simulated

to be 9.0 kWh. This represents an error of less than 1% and

5%, respectively.

The overshoot of going below Toff seen in both the
measured and simulated temperatures is in some sense

wasted energy because it represents overcooling of the

BRITE space. And even though the thermostat in BRITE

has a heat anticipator that adjusts the Ton and Toff of the

two-position control, it cannot adequately compensate for

variations in weather and occupancy. The learning-based

MPC scheme we have developed can compensate for these

factors, and so it can prevent overcooling and thus save
energy.

V. LEARNING-BASED MPC OF BRITE

Safety and robustness can be guaranteed with approximate

models, but maximum efficiency requires accurate models.

This tradeoff has driven research in adaptive control [32],

[33] and learning-based control [34]–[36]. Statistical

methods by themselves cannot ensure robustness [37],

[38], and so the approach of learning-based MPC [10] is to

begin with an approximate model of the system and refine

it with statistical methods. It is a rigorous control method
that 1) handles state and input constraints, 2) optimizes

system performance with respect to a cost function, 3) uses

statistical identification tools to learn model uncertainties,

and 4) provably converges.

The control situation is as follows. We have a model (4)

for the cooling dynamics of the BRITE room, and we have

constraints on the maximum (24 �C) and minimum tem-

perature (20 �C) to ensure comfort for people in the room.

Preliminary experiments [27] made use of tube MPC [39]–

[41] (a form of robust MPC [42]) to ensure that these

constraints were never violated despite varying occupancy

and uncertainties in the weather forecast. However, test-
ing over an extended period of time showed that the robust

MPC described in [27] was too conservative because, when

tracking a desired temperature of (22 �C), the temperature

rarely approached the constraints.

Consequently, we began to test standard linear MPC

for its ability to stay within the desired temperature range.

This control scheme had the same property in our testsV
that it kept the room temperature within the constraints. It
is important to remember this fact that a standard linear

MPC ensures constraint satisfaction. However, the energy

efficiency of this base scheme was lacking. It was unable to

stay close to the desired (22 �C), and it could use more

energy than two-position control of the thermostat. Be-

cause of this, we implemented a learning-based MPC

technique to control the room temperature.

A. Special Case of Learning-Based MPC
The main idea of this technique [10] is that we de-

couple performance from robustness. By robustness, we

mean whether an MPC scheme can ensure constraint sa-
tisfaction despite modeling errors and other uncertainties.

Linear MPC itself has certain robustness properties [43].

As a practical issue, our tests on the BRITE testbed show

that standard linear MPC gives sufficient robustness. In

Fig. 4. The thermostat used two-position control to maintain the temperature. Its average on and off temperatures were Ton ¼ 22.8 �C and

Toff ¼ 22.4 �C, and these are shown by the solid, horizontal lines. The experimentally measured temperature is shown in degrees Celsius.

Semiparametric regression was used to identify a continuous time model, and a simulation of this model using experimentally measured

temperature as the initial condition is shown in degrees Celsius. The control of the simulation is different than the experimental control, and

it was determined using the Ton and Toff values. The energy estimated by the simulation is 9.0 kWh, and (1) applied to the measured inputs

computes 8.6 kWh; this is in contrast to the measured consumption of 8.6 kWh. Despite modeling errors, the energy estimates differ from the

true value by only 5% and less than 1%. (a) Experimental temperature. (b) Simulated temperature.
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more general cases, we would need to use tube MPC to
ensure enough robustness for learning-based MPC [10].

We use a tilde to denote the temperature predicted by

the learning-based model, an overline denotes the

temperature predicted by the linear model with constant

occupancy term 6.98 �C, and no overline indicates the

measured temperature. The control action at time m, with

temperature T½m�, control horizon N ¼ 20 (5 h), weight

p ¼ 0:075, and desired temperature Td ¼ 22 �C is given by
the minimizer to the following optimization problem:

minu½��
XN

k¼0

p � ~T½mþ k� � Td

� �2þ
XN¼1

k¼0

ðrþ �Þ � u½mþ k�

(7)

s:t: ~T½mþ i� ¼ 0:64 � ~T½mþ i� 1� � 2:64 � u½mþ i� 1�

þ 0:10½mþ i� 1� þ q̂½mþ i� 1� (8)

T½mþ i� ¼ 0:64 � T½mþ i� 1� � 2:64 � u½mþ i� 1�

þ 0:10 � w½mþ i� 1� þ 6:98 (9)

T½mþ i� 2 ½20; 24� (10)

u½mþ i� 1� 2 ½0; 0:5� (11)

for i ¼ 1; . . . ;N. The problem (7) generates an input u½m�
that minimizes the expected future performance of BRITE

with respect to a cost function that encodes energy con-

sumption and temperature deviation. Here, the term q̂½n�
represents the predicted amounts of occupancy and is
computed using learning. In our unoptimized MATLAB

code, this computation (7) takes between 1 and 2 s. It is

easily scalable to larger problems because (7) is simply a

quadratic program.

The optimization problem (7) decouples performance

and robustness in the following manner. Robustness is due

to the constraints (9) which are nothing more than the

identified model (4) with constant occupancy. Perfor-
mance is due to the use of (8) in the cost function. The

intuition is that the cost depends on the learned occupancy

q̂ through (8), and the control is chosen such that the MPC

without learning that is sufficiently robust (4) would

satisfy the temperature and control constraints.

There are several important things to note about this

formulation (7). The cost function contains 1) p � ðT½m þ
k� � TdÞ2 that represents deviation from the desired tem-
perature and 2) the convex energy (2). This explicitly

controls the tradeoff between keeping the temperature

close to a comfortable value and the amount of energy

used, and the value p ¼ 0:075 was chosen because it gives

a good tradeoff. Also, the convex energy (2) encourages a

tradeoff between minimizing switching and duration of

keeping the AC on, as discussed in Section III-B.

B. Learning Occupancy
Estimating occupancy is a detailed process that re-

quires combining models of human behavior with sensors

[9]. The BRITE platform faces an additional challenge be-

cause the occupancy varies immensely over the span of

days and weeks, depending upon when assignments and

projects are due. Some of the occupancy, such as for as-

signments, will likely be periodic in nature; other occu-

pancy, like for projects, is more irregular and harder to
predict. Furthermore, we need to know the heat generated

by occupants and their use of computer equipment in the

room for the purposes of energy efficient control. The

correlation between the number of individuals in the room

and the heat load will likely vary depending upon how

many computers are in use.

Instead of relating the number of individuals in the

BRITE room to the heat load q½n�, we focus our efforts on
estimating this q½n� directly from the temperature mea-

surements and our model (4). We use the estimate

q̂½mþ i� ¼ T½m� � 0:64 � T½m� 1�ð
� 2:64 � u½m� 1� þ 0:10 � w½m� 1�Þ (12)

for i ¼ 0; . . . ;N � 1. The intuition is that the occupancy
heating q½n� is the discrepancy in what the linear model

without the occupancy term 6.98 predicts the temperature

at the next time step is and what the actual temperature is.

The approach we take in this paper is to use the sim-

plest possible estimateVmore accurate estimates of q½n�
taking into account specific models will only improve the

energy efficiency of the BRITE testbed. An obvious exten-

sion is to fit our estimates to curves of best fit (e.g., a line
or parabola) to compensate for the time-varying nature of

the occupancy. Other extensions are to incorporate models

of human behavior and other sensors.

We used this estimate of the occupancy for several

reasons. As mentioned, this is the easiest estimate in terms

of modeling: We do not need to worry about how to model

long and short term human behavior. Also, it is well be-

haved. Extrapolations using curves of best fit can signifi-
cantly overestimate and underestimate on long time

horizons. Finally, this estimate is easy to compute and

shows that the learning can be done in a scalable manner.

VI. EVALUATING THE ENERGY
EFFICIENCY OF LEARNING-BASED
MPC WITH BRITE

The original aim of building the BRITE platform [27] was

to enable evaluation of existing methods and design new

control schemes that minimize the energy consumption

needed to maintain a comfortable temperature in the

room. In our experiments, linear MPC had inconsistent

performance due to its inability to compensate for the
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impacts of occupancy; it had difficulty with either saving
energy as compared to two-position control [27] or main-

taining temperature close to the desired value. This is

related to a fundamental tradeoff in control systems be-

tween robustness to model uncertainty and performance

due to model accuracy [10].

We implemented a learning-based MPC scheme [10]

with the intuition that this could provide improved perfor-

mance and reduce energy usage. Our experiments on the
BRITE platform suggest that this is indeed the case.

The energy improvements come from two features of the

learning-based MPC. First, it can compensate for fluc-

tuations in weather and occupancy through learning. For

instance, the two-position control of the thermostat over-

cools the room when occupancy is low, and the heat anti-

cipator in the thermostat does not adequately compensate.

Second, it considers the penalty due to electrical con-
sumption by the heat pump transient and tries to optimize

the tradeoff between minimizing switching and AC on

time.

A. Experimental Methodology on BRITE
BRITE is a living laboratory in which we cannot control

weather and occupant behavior, and so we cannot make

direct experimental comparisons between control meth-

ods. One potential solution is to run many experiments,

but this is difficult due to the huge variability in weather

and occupancy. Our approach is to run one control scheme

on BRITE and simulate the others. This allows a compa-

rison under identical weather and occupancy conditions,

though with some error between the simulated and real
energy consumptions because of modeling mismatch. To

mitigate this, we alternate which method is simulated.

The results of two experiments are summarized in

Table 1. The first controlled BRITE with two-position

control, and the second used learning-based MPC on

BRITE; we do not include any experiments with linear

MPC. The energy usages measured by BRITE and esti-

mated by (1) are both provided for these experiments.
These are compared to energy consumption estimates,

using (1), of simulations of other control schemes under

identical weather and occupancy levels. The table lists the

number of times the AC was turned on, the duty cycle of

the AC, the tracking error as measured by the RMS error

between the room temperature and the desired temper-

ature Td ¼ 22 �C, and the variation in the room temper-
ature as measured by its standard deviation. The external

load corresponds to the average temperature increase over

15 min caused by the weather and occupancy.

B. Two-Position Control Experiment on BRITE
Over a 24-h span beginning and ending on a weekday,

we started running the two-position control of the ther-
mostat on BRITE at 11 p.m. The experimentally measured

temperature is shown in Fig. 5(a). Using our models, we

simulated the corresponding behavior of the learning-

based MPC, which is shown in Fig. 5(b). For our sim-

ulation, we used the stored weather forecasts, true weather

temperature, and occupancy estimated using our model of

two-position thermostat control. The learning-based MPC

used an estimated 28% less energy than the two-position
control. The PWM control actions corresponding to two-

position control and learning-based MPC are shown in

Fig. 5(c) and (d), respectively. Moreover, Fig. 5(e) shows

the change in temperature over 15 min corresponding to

experimentally measured weather and occupancy (i.e.,

kww½n� þ q½n�).

C. Learning-Based MPC Experiment on BRITE
We ran the learning-based MPC control on the BRITE

platform over a time range that covered two weekdays, and

started at roughly 1 p.m. The experimentally measured

temperature is shown in Fig. 6(a). Using our models, we

simulated the corresponding behavior of the two-position

control, which is shown in Fig. 6(b). For our simulation,

we used the true weather temperature and occupancy
estimated using our model of the learning-based MPC. Our

learning-based MPC approach on BRITE is estimated to

reduce the energy consumption by 66%, when compared

to the existing two-position control scheme. The control

actions corresponding to the two-position and learning-

based MPC are shown in Fig. 6(c) and (d), respectively.

The measured weather and occupancy for this experiment

kww½n� þ q½n� is given in Fig. 6(e).

D. Discussion of Results
Both comparisons show that significant energy is saved

by the learning-based MPC scheme. It is useful to discuss

what features of our implementation and scheme con-

tribute to this, because many of these principles may

Table 1 Summary of Experimental and Simulated Energy Comparisons on BRITE
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generalize to other HVAC systems. Broadly speaking, the

improvements come about through the use of modeling

and statistical techniques.

Identifying a discrete time version of a mathematical

model taken from physics (3) helps to improve efficiency.
There are complex dynamics in the heat pump, and the

evaporator continues to briefly cool air after the heat pump

is turned off [14]. The discrete time form of the model (3)

accounts for this behavior by considering the AC behavior

over a 15-min span of time, rather than its instantaneous

behavior.

Furthermore, identifying the parameters of the model

allows us to be able to estimate occupancy through only

temperature measurements, as in (12). These occupancy

estimates are important because this feature of the system

adds considerable variation in the temperature dynamics

of the room. Whereas two-position control overcools the

room when there is lower occupancy, learning-based MPC
detects lower levels of occupancy and reduces the amount

of cooling.

Last, the electrical energy characteristics of the heat

pump are important to conserving energy. The transients

of the heat pump effectively add a penalty, in terms of

energy used, for switching too frequently. The learning-

based MPC can make a tradeoff between how long the heat

pump is turned on for and how often it switches, and it can

Fig. 5. The AC was controlled by the two-position control of the thermostat, and the corresponding measured room temperature is shown in

units of degrees Celsius. A simulation of the learning-based MPC is given in degrees Celsius. The two-position control uses 32.6 kWh

(estimated 35.1 kWh) of electrical energy, and the learning-based MPC is estimated to use 23.6 kWh. The PWM control generated by the

two-position and learning-based MPC control are also shown. An AC state of 0 corresponds to the AC off, and AC state of 1 corresponds to

the AC on. The external heating load over 15 min due to weather and occupancy kww½n� þ q½n� is given in degrees Celsius. (a) Experimental

two-position temperature. (b) Simulated learning-based MPC temperature. (c) Experimental two-position PWM. (d) Simulated learning-based

MPC PWM. (e) External heating load.
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dynamically adjust this tradeoff based on the estimated

occupancy.

This tradeoff is actually very interesting, because it
leads to counter-intuitive behaviors with the learning-

based MPC. Examining the temperature of the learning-

based MPC [i.e., Figs. 6(a) and 5(b)] shows that the

bands within which the temperature is maintained

actually vary over time. Generally speaking, when the

outside temperature or occupancy is high, the learning-

based MPC actually tightens the temperature bands.

When the outside is cold or occupancy is low, the
learning-based MPC widens the temperature bands.

These behaviors can be explained by thinking of the

electrical behavior of the heat pump. When the

temperature or occupancy is high, the AC needs to be
turned on for a greater fraction of time. The steady state

energy consumption is much higher than the transient

energy consumption, and so the learning-based MPC

does not penalize as much for frequently switching. In

fact, it increases switching to prevent overcooling the

room. In the opposite situation, the AC needs to do less

total cooling. Here, the steady state energy consumption

is smaller and so transient energy due to switching
becomes important. The learning-based MPC reduces

Fig. 6.The AC was controlled by the learning-based MPC, and the corresponding measured room temperature is shown in units of degrees Celsius.

A simulation of the two-position control is given in degrees Celsius. The learning-based MPC uses 11.8 kWh (estimated 13.3 kWh) of electrical

energy, and the two-position control is estimated to use 34.5 kWh. The PWM control generated by the learning-based MPC and the

two-position control are also shown. An AC state of 0 corresponds to the AC off, and AC state of 1 corresponds to the AC on. The change in

temperature over 15 min corresponding to experimentally measured weather and occupancy kww½n� þ q½n� is provided in degrees Celsius.

(a) Experimental learning-based MPC temperature. (b) Simulated two-position temperature. (c) Experimental learning-based MPC PWM.

(d) Simulated two-position PWM. (e) External heating load.
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switching in these cases and allows for larger tempera-
ture variations.

VII. CONCLUSION

We have presented our BRITE platform, studied the tran-

sient and steady stage electrical characteristics of the heat

pump in BRITE, identified a dynamical model of the sys-

tem, explained the impact of occupants on the dynamics,
and implemented a learning-based MPC scheme that esti-

mates occupancy using only temperature measurements.

Experiments show that learning-based MPC saves an

estimated 30%–70% of energy compared to two-position

control. More sophisticated estimates of occupancy will

likely yield further reductions.

One future direction is evaluating how the energy

savings depend upon the outside temperature and occu-
pancy levels; the lower 28% savings occurred on a warmer

day than the savings of 66%. It is not known how much of
this is due to differences in weather versus simulation

modeling errors. We are gathering more data to further

evaluate these issues.

Another planned direction is the implementation of

learning-based MPC on a larger testbed. We have studied a

single-stage heat pump for a single room or small building;

however, large HVAC systems for many rooms add more

challenges to the problem of saving energy [4]–[8]. Esti-
mating and adjusting for occupancy, as well as the tran-

sient and steady state electrical consumption of the HVAC

equipment, will likely lead to real savings in energy. h
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