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Abstract—This paper presents a real-time algorithm to
predict the energy consumption of the heating, ventilation, and
air conditioning (HVAC) system at home. The autoregressive
model with exogenous inputs (ARX model) is used to identify
the house thermal model. The ARX model, with the thermostat
controller, is simulated to obtain the future state of the
HVAC system with the knowledge of the weather forecast
data obtained from a weather server. The utility bill for the
HVAC system can be estimated if a real-time price model
is provided, thereafter. The proposed method is validated
by experimentation in a particular home using GE Nucleus
energy management system for data aggregation and algorithm
implementation. The experimental results show that the energy
prediction error is around 15% in both heating and cooling
mode of the HVAC system.

Keywords-dynamic house thermal model; HVAC; bill predic-
tion;

[. INTRODUCTION

The heating, ventilation, and air conditioning (HVAC)
system can cost over 50% of the total energy consumption
at residential houses. It is important to make people aware
of their home energy consumption in advance so that actions
can be taken to save the utility bill if necessary.

There are two kinds of data-driven energy modeling
approaches. One is called the direct method. It assumes
a direct mathematical relationship between a set of inputs
(e.g., outdoor temperature) and an output (e.g., electrical
consumption). Regression methods [1] are used to determine
the parameters. In [2], many such methods are discussed.
However, several drawbacks in this method are: a) the
temporal dependencies are not modeled; b) the prediction
error is larger beyond the range of the training inputs;
¢) the control parameters such as the setpoint setting and
the deadband setting are not considered.

Another method is based on the identification of a house
thermal model. Afterwards, the model is simulated with
the known control logic of the HVAC system for energy
prediction. There are many popluar house thermal models
presented in the liturature. In [3], a white-box approach is
followed. A heat transfer model, which considers a building
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as a thermal network analogous to an electric circuit net-
work, is used to build a state space model. The coefficients
of the model, such as house structure, thermal resistance,
and thermal capacitance are obtained from the construction
handbook. Simplification of such a heat transfer model can
be found in [4], where the authors stated that larger model
size (more than 2nd order) does not lead to significant
improvement of their simulation results, in [5], and in [6].
In [7], autoregressive models with external input (ARX) and
autoregressive moving average models with external input
(ARMAX) are investigated with different structures and it
is also concluded that the 2nd order ARX model is preferred.
Artificial neural network (ANN) is an alternative model [8].
The performance of the ARX model and a neural network
auto regressive with exogenous input (NNARX) model is
compared in [9]. The conclusion is that NNARX gives more
accurate indoor temperature prediction than the ARX model
since ANN can capture some non-linearity in the process.
However, in this paper, the ARX model is used rather than
a neural network model due to the following consideration.

o The identification algorithm for ARX model, the recur-
sive least square (RLS) [10], is non-iterative, computa-
tionally inexpensive, and relatively easy to implement;
ARX model can achieve decent performance with very
simple model structure (2nd order model seems to
perform well in most cases);

ARX model provides a straightforward physical inter-
pretation. For example, it is easy to see the contribution
of each input to the indoor temperature.

The indoor temperature can depend on many factors, such
as the outdoor temperature, the effective power of HVAC
systems, relative humidity, solar radiation, wind speed,
house condition, indoor human activity, etc. All of them are
not easy to measure or to quantify for an ordinary household.
Indeed, more measurement may result in a better model,
but may be difficult to implement or to commercialize in
practice.

The contribution of this paper is that we only consider
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easily accessible measurements, which has major impact on
the model, including the indoor temperature (from a ther-
mostat), the state of the HVAC system (from a sub-meter),
and the outdoor temperature (from an online web resource)
with a simple 2nd order ARX model for the identification
of the thermal model. We show that this approach can be
implemented in an ordinary household with off-the-shelf
products (GE Nucleus energy management system) and yet
provides the energy prediction within an acceptable error
bound.

The paper is organized as follows. In Section II, the
detailed mathematical formulation and the procedure of
the method are described including data collection, data
processing, model identification, and energy prediction. Sec-
tion III presents the experimental set-up and the results of the
proposed method in both heating and cooling mode of the
HVAC system. The paper is concluded with recommendation
for future work in Section IV.

II. THERMAL MODEL IDENTIFICATION AND BILL
PREDICTION

In this section, we present in detail the method of identify-
ing the ARX model and predicting the energy consumption
of HVAC system. For the ease of presentation, we discuss
how to identify a heating model in winter. However, the
exactly same procedure can be followed to work with a
cooling model in summer.

A. Input-output Data and Data Pre-processing

Let k be the discrete time instant with some sampling
period Ts. At each time instant k, we need to obtain the
following variables.

o Indoor temperature y;, in Celsius;

o Outdoor temperature v, in Celsius;

o Instantaneous HVAC power consumption #j in watts.
It is not hard to derive the state of the HVAC system based
on its instantaneous power ;. When the heater or the cooler
is on, uy is usually on the order of hundreds or thousands
of watts while on the order of ten watts when off. It is thus
easy to find a threshold C' (e.g. 100 watts) and we define a
state variable uy, € {0,1} for the HVAC system by

i i
Uk:{O if a,, < C 0

1 otherwise

Denote eu the averaged energy usage as the heater or the
cooler is off and ev the averaged energy usage when it is
on. Both eu and ev can be estimated at time %k by averaging
over the history.

k

eup = Y (1 —u)i T, )
1=1

evp =Y u;ii; T, 3)
1=1

where T is the sampling time.
Let us denote the difference between the outdoor and
indoor temperature by

Vg = Vg — Yk 4)
B. ARX Model Identification

The thermal model is modeled by a discrete-time auto-
regressive with an exogenous inputs (ARX) model with v
and w as inputs and y as the output. In general, such an
ARX model is

nbl nbz

yk—zazyk H‘thvk H‘meuk itew (5

where ¢ is the noise term with zero mean. For simplicity,

we will present with n, = 2, np, = 1, and ny, = 1 and the
noise term ¢ is omitted because it does not affect the mean
estimation. In Section III, we shall compare the performance
when we change the model structure. This reduces the model
structure to

Yk = Q1Yk—1 + Q2Yr—2 + b1Vk_1 + boug 1 (6)

The ARX model can be identified by the recursive least
square (RLS) algorithm, which can be found [10].

C. Weather Forecast Data Fitting

The weather data can be obtained from the online weather
service for the particular region where the house is located,
such as Weather Underground (www.wunderground.com).
The current temperature can be pulled directly from the
server, while the forecast data usually needs to be inter-
polated or fitted depending on the available data. If hourly
future data is available, it might be enough to perform a
linear interpolation to estimate the daily profile. Sometimes
only daily maximum and daily minimum are available. In
this case, a piece-wise sinusoid curve is fitted to describe
the daily temperature variation.

Given the daily maximum (7},,,) and minimum tem-
perature (7},:,), a sinusoid curve needs to be fitted. We
first estimate the time for 7,,, and 7T},;, to be achieved at
that day, denoted by %,,,;, and t,,4, (UTC time in second),
respectively, if they are not known. Let to(m) be the UTC
time at midnight (0 am) at day m. It is logical to use the
average time over the previous L days as an estimate. To that
end, let W be the total seconds of a day, namely W = 86400
sec. The estimate of ¢,,s,, (m + 1) is given by

fmm(m + 1) = to(m + 1)

1 L—-1
+Z Z (tmin(m — 1) = to(m + 1) + (i + 1) M)
_ @Dy 1
2 L Ztmrn _Z (7)

and £,,4.(m + 1) can be found similarly.
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At day m and m + 1, we have ¢, (m) < tpaz(m) <
tmin(m + 1) (use estimates in Equation 7 if they are not
available), then the temperature fitting profile y(¢) is given
in Equation 8.

D. Thermostat Controller
Most common residential thermostats are bang-bang con-
trollers with a deadband 26. The controller in the heating
mode is
1 ifup 1 =0,yp-1 <7h-1—6
ifup_1=1,yp1 <Th_1+9 )
0 otherwise

U = 1

where 7 is set point at time k. Most programmable
thermostats have pre-programmed setpoints. Similarly, the
controller in the cooling mode is

1 ifup1=0,yp-1>7-1+6

up =191 fup1=1Lyr1>rp1—-6 (10)

0 otherwise
E. Energy/Bill Prediction
Let 7 be the UTC time for the slow-time scale of the

prediction. At time 7, the identified dynamic model is

Y

Assume that the prediction window is of length N. Let
yo and y_; be the initial condition, the temperature at time
7 and 7 —Tj, respectively. The forecast temperature is given
by use of Equation 8

U = f(T + kTS)»

Yk = a1 Yk—1 + a5 Yp—2 + bTvp—1 + bup—1

k=1,...,N (12)

Then the future indoor temperature ¥, and the state of the
HVAC system uj, can be simulated following Equation 11
and 9 (or Equation 10).Then the energy consumption is given

as
N

Zev cug + eu(l — ug)

k=1

13)

Recall that uy only takes value 0 or 1, so only the first
term contributes if u;y = 1 and only the second term does,
otherwise.

If a time-of-use price model is available, we can easily
compute the estimated bill. Assume that p(k) gives the unit
price at time k, then the predicted bill can be computed by

N

Zp(k) (ev - ug + eu(l — ug))

k=1

(14)

Traz Tinin 1 Traz —Tmin 1
(4 T 41) . T ()= Toin 1) o

) t € [tmaz (M), tmin (m + 1)) ®)

tmin(M+1)—tmaz(m)

Test House

Figure 1.

III. EXPERIMENTAL RESULTS

In this section, the experimental set-up of the proposed
method is described. Experimental results are presented to
validate the proposed method.

A. Experimental Set-up

The experiment was conducted in an occupied single-
family home constructed circa 1940, as shown in Figure 1.
It is an all brick, one and a half story house with a finished
basement. The above grade living area is approximately
1800 sq-ft. The house was occupied by two adults and two
children and is located in Louisville Kentucky, inside the
40205 zip code. Louisville has a humid sub-tropical climate,
with hot and humid summers, cold winters, and temperate
springs and falls. The house has several efficiency upgrades,
including double-pane windows.

The test house contained a GE Nucleus energy manage-
ment system. The Nucleus is a small form factor computer
capable of communicating via the Zigbee (IEEE802.15.4)
wireless standard to Smart Energy Profile (SEP) devices.
Such SEP devices include smart electricity meters, load
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Figure 2. Nucleus Connection Diagram

panel based energy sensors, plug sensors, thermostats, envi-
ronment sensors, and a range of GE smart appliances. The
Nucleus can also communicate over IP via Wifi or Ethernet.
Figure 2 illustrates a connection diagram for the Nucleus.
In addition to advanced communications technologies, the
Nucleus also contains data storage, control, and visualization
capabilities.

A special version of the Nucleus software was created for
this test in order to enable advanced data acquisition. The
following measurement were performed on the house:

o Whole house power measurements with 15 second
sample rate.

Air Conditioning compressor power measurements with
15 second sample rate.

Heating Ventilation and Air Conditioning (HVAC)
blower power measurements with 15 second sample
rate.

Indoor temperature measurements via a wireless ther-
mostat.

Outdoor temperature measurements via a Zigbee wire-
less sensor.

We collected 30 days of data in the test house in Novem-
ber, 2011, with Figure 3 showing a portion of the collected
data. The solid curve and the dashdot curve are the indoor
temperature (y;,) measured by the thermostat and the outdoor
temperature (U5) measure by a temperature sensor located at
the porch and well shielded from the sunshine, respectively.
The dashed one is the scaled energy consumption for HVAC
(). Figure 4 gives a zoomed-in version of a portion of
Figure 3. It is observed that when wy is high, the indoor
temperature y; arises, which indicates that the heater is
turned on.
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Figure 4.  Zoomed-in of Figure 3

B. Algorithm Evaluation

We compare the results by executing the algorithm with
the fitted weather data and with the actual measurement.
Figure 5 gives the actual measurement (solid) and the fitted
data (dashed) of the outdoor temperature using Equation 8.

We ran the RLS algorithm with the forgetting factor
A = 0.99995 to identify the ARX model of the house.
We executed the proposed method to perform the energy
prediction with the prediction window of 2 weeks (namely,
N = 14). The prediction started on day 6 and ran every
half a day. Table I shows the prediction results for energy
prediction and for future indoor temperature for different
orders of parameters. It is observed that the prediction error
is around 15% with the fitted weather data and 8% with
the actual measurement. The averaged temperature error is
around 0.5°C for all the cases. It is noted that the order
ng of the ARX model has little impact on the result. This
coincides with the observation in the literature [4] [7] that
a second order model is enough for the thermal model.

To visualize the simulation result, we identified the ARX
model using half of the data (15 days) and ran the simulation
from day 1 with the initial condition, the identified model,
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Figure 5. Fitted Outdoor Temperature vs. Actual Measurement

Table 1
PREDICTION ERROR FOR HEATING MODEL

Order (n,) Fitted Weather Data Measurement
Energy Prediction Error 14.61% 7.89%
2 Energy Prediction Std. 9.48% 4.87%
Temperature Error (°C) 0.4867 0.4745
Temperature Std. (°C) 0.5402 0.5401
Energy Prediction Error 14.61% 7.96%
3 Energy Prediction Std. 9.39% 4.85%
- Temperature Error (°C) 0.4838 04712
Temperature Std. (°C) 0.5391 0.5381
Energy Prediction Error 14.60% 7.93%
4 Energy Prediction Std. 9.35% 4.85%
Temperature Error (°C) 0.4816 0.4685
Temperature Std. (°C) 0.5373 0.5375
Energy Prediction Error 14.58% 7.91%
5 Energy Prediction Std. 9.35% 4.86%
Temperature Error (°C) 0.4804 0.4689
Temperature Std. (°C) 0.5360 0.5367

and the outdoor temperature data. Figure 6 gives the com-
parison between the prediction of the indoor temperature
and the state of the HVAC in both cases of using fitted
weather data and actual measurement. Figure 6(a) shows
the actual measurement. Figure 6(b) and Figure 6(c) show
the predicted values in both cases. The predicted values are
fairly close to the actual values in either case.

To study the effect of setpoints on the energy consump-
tion, we offset the setpoints by some certain degrees in
the prediction window (second half of the data). The ARX
model was identified using the first half of data, as above.
Figure 7 depicts how the energy prediction for the second
half changes depends on the different setpoints. Surprisingly,
it shows almost a linear relation. It is noted that the energy
consumption cuts into half if one lowers the setpoints by
4 degrees. This chart allows the users to make trade-off
between their comfort and the cost.

Another set of data was collected in June, 2012, to validate
the proposed method for a cooling model. Figure 8 depicts
the raw data of the indoor temperature (solid), outdoor
temperature (dashdot), and the scaled instantaneous power
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of the air conditioner (dashed). It is observed that when the
power of the AC is high, the indoor temperature decreases as
expected since the AC is cooling down the house. A similar
simulation is executed to create Table II in this case. Again
the prediction error is found to be around 15% with the fitted
weather data when a second order model is used.

IV. CONCLUSION AND FUTURE WORK

This paper presents a method to predict the energy con-
sumption of the HVAC system at home. The ARX model
is used for identiying a house thermal model. With the
knowledge of the thermostat controller and the weather
forecast data, the ARX model is simulated to predict the
future state of the HVAC system and therefore the energy

Table II
PREDICTION ERROR FOR COOLING MODEL

Order n, = 2 Fitted Weather Data | Actual Measurement
Energy Prediction Error 15.94% 3.00%
Energy Prediction Std. 5.31% 1.28%
Temperature Error (°C) 0.4955 0.4615
Temperature Std. (°C) 0.3617 0.3608
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consumption. This method can be easily implemented in
an ordinary house with GE Nucleus technology for home
energy management. A real-time experiment was conducted
in a particular house and the prediction error of the pro-
posed method is around 15% for a two-week prediction
window. The relationship between energy consumption and
the setpoints can be revealed and provides users with useful
information to achieve trade-off between setpoints and cost.
One of the future directions is to incorporate users’
comfort and cost effect into the formulation and to design
a high-level controller above the thermostat controller to
automatically adjust the setpoint of the house.
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